Browsing by Subject "Habitat suitability"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Projecting the impact of climate change on honey bee plant habitat distribution in Northern Ethiopia(2024) Gebremedhn, Haftom; Gebrewahid, Yikunoamlak; Haile, Gebremedhin Gebremeskel; Hadgu, Gebre; Atsbha, Tesfay; Hailu, Teweldemedhn Gebretinsae; Bezabih, Gebreamlak; Gebremedhn, Haftom; Ghent University, Ghent, Belgium; Gebrewahid, Yikunoamlak; Tigray Agricultural Research Institute, Mekelle, Ethiopia; Haile, Gebremedhin Gebremeskel; Department of Earth and Environmental Sciences, Wesleyan University, Middletown, USA; Hadgu, Gebre; Tigray Agricultural Research Institute, Mekelle, Ethiopia; Atsbha, Tesfay; Tigray Agricultural Research Institute, Mekelle, Ethiopia; Hailu, Teweldemedhn Gebretinsae; Institute of Animal Science, University of Hohenheim, Stuttgart, Germany; Bezabih, Gebreamlak; Tigray Agricultural Research Institute, Mekelle, EthiopiaClimate change significantly affects the diversity, growth, and survival of indigenous plant species thereby influencing the nutrition, health and productivity of honey bees ( Apis mellifera ). Hypoestes forskaolii (Vahl) is one of the major honey bee plant species in Ethiopia’s Tigray region. It is rich in pollen and nectar that typically provides white honey, which fetches a premium price in both local and inter-national markets. Despite its socio-economic and apicultural significance, the distribution of H. forskaolii has been declining, raising concerns regarding its conservation efforts. However, there is limited knowledge on how environmental and climatic factors affect its current distribution and response to future climate change. The study investigates the current and projected (the 2030s, 2050s, 2070s, and 2090s) habitat distributions of H. forskaolii under three future climate change scenarios (ssp126, ssp245, and ssp585) using the Maximum Entropy Model (MaxEnt). The results show that land use (50.1%), agro-ecology (28%), precipitation during the Driest Quarter (11.2%) and soil texture (6.1%) predominantly influence the distribution of H. forskaolii, collectively explaining 95.4% of the model's predictive power. Habitats rich in evergreen trees and mosaic herbaceous with good vegetation cover are identified as the most suitable for H. forskaolii . The spatial distribution of H. forskaolii is concentrated in the highlands and mid-highlands of the eastern and southern parts of Tigray, characterized by a colder temperature. Across the three climate change scenarios, the size of suitable habitat for H. forskaolii is projected to decrease over the four time periods studied. Predictions under the ssp585 scenario reveal alarming results, indicating a substantial decrease in the suitable habitat for H. forskaolii from 4.26% in the 2030s to 19.09% in the 2090s. Therefore, given the challenges posed by climate change, research efforts should focus on identifying and evaluating new technologies that can help the H. forskaolii species in adapting and mitigating the effects of climate change.Publication Unveiling wheat’s future amidst climate change in the Central Ethiopia Region(2024) Senbeta, Abate Feyissa; Worku, Walelign; Gayler, Sebastian; Naimi, Babak; Kuhn, Arnd Jürgen; Fenu, GiuseppeQuantifying how climatic change affects wheat production, and accurately predicting its potential distributions in the face of future climate, are highly important for ensuring food security in Ethiopia. This study leverages advanced machine learning algorithms including Random Forest, Maxent, Boosted Regression Tree, and Generalised Linear Model alongside an ensemble approach to accurately predict shifts in wheat habitat suitability in the Central Ethiopia Region over the upcoming decades. An extensive dataset consisting of 19 bioclimatic variables (Bio1–Bio19), elevation, solar radiation, and topographic positioning index was refined by excluding collinear predictors to increase model accuracy. The analysis revealed that the precipitation of the wettest month, minimum temperature of the coldest month, temperature seasonality, and precipitation of the coldest quarter are the most influential factors, which collectively account for a significant proportion of habitat suitability changes. The future projections revealed that up to 100% of the regions currently classified as moderately or highly suitable for wheat could become unsuitable by 2050, 2070, and 2090, illustrating a dramatic potential decline in wheat production. Generally, the future of wheat cultivation will depend heavily on developing varieties that can thrive under altered conditions; thus, immediate and informed action is needed to safeguard the food security of the region.
