Browsing by Subject "Harnstoff"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Evaluation and improvement of N fertilization strategies in the wheat/maize double-cropping system of the North China Plain(2015) Hartmann, Tobias Edward; Müller, TorstenThe North China Plain (NCP) is the main production area of cereal crops in China. The intensification of agricultural systems and the increased use of chemical N fertilizers are contributing to environmental pollution. One of the objectives of this thesis was to apply an Nmin based approach for the calculation of N application rates to a previously over-fertilized farmers field of the NCP and to evaluate the potential of reducing N inputs while maintaining the grain yield of a summer-maize/winter-wheat double-cropping system; and to evaluate fertilizer strategies, aiming to reduce N inputs and loss. Using an Nmin based approach for the calculation of fertilizer application rates, a reduction of fertilizer input by up to 50% compared to farmers practice (550 kg N ha-1 a-1) is possible without negatively affecting the grain yield of a wheat / maize double cropping system. The extreme re-supply of N during the summer-vegetation periods of maize in the first two experimental seasons resulted in high yields of the control treatment (CK: 2009: 5.7 and 2010: 5.9 Mg ha-1), which did not significantly differ from the fertilized treatments. This resulted in a reduced recovery efficiency of N (REN: 0.09 kg kg-1 – 0.30 kg kg-1). According to the results of this field experiment there was no agronomic justification for the application of fertilizer N. The grain yield of maize of the control treatment finally decreased in the third vegetation period of summer-maize. While maintaining the yield level, the optimized application of N increased REN (0.37 – 0.58 kg kg-1) significantly compared to farmers practice (0.21 kg kg-1) in this final vegetation period of maize. Wheat, in contrast to maize, is dependent on the application of fertilizer N for yield formation. In both vegetation periods of wheat, REN of the reduced treatments (0.34 – 1.0 kg kg-1) was significantly higher compared to FP (0.26 and 0.27 kg kg-1). The highest cumulated (5 vegetation periods) agronomic efficiency of N, as well as cumulated grain yield of the wheat/maize double-cropping system was observed when ammoniumsulphate-nitrate was applied in combination with the nitrification inhibitor 3,4-dimethylpyrazolephosphate (ASNDMPP: AEN: 19 kg kg-1, yield: 35 Mg ha-1) and according to crop N demand and residual soil mineral N. The highest REN was observed when urea ammonium nitrate was applied in a shallow, banded depot (UANDEP: 40 kg kg-1). The results of this field experiment further show that the N surplus (fertilized N - grain N) as well as the N balance (N Input - N output) after harvest are significantly lower when an optimized approach to fertilizer application is followed. The over-application of N for an optimized application of urea or ASNDMPP (Surplus: -25kg to 98 kg N ha-1; Balance: -36 to 102 kg N ha-1) was significantly reduced compared to current farmers practice (Surplus: 156kg to 187 kg N ha-1; Balance: 56 to 262 kg N ha-1). This leads to lower residual N in the soil horizon from 0 - 90 cm in the reduced treatments (113 kg N ha-1 at end of experiment) compared to FP (293 kg N ha-1). The results of this experiment indicate that N contained in the residues of maize is available only to the subsequent summer-crop and may sufficiently supply N for the yield formation of maize. Should the over-application of N be effectively reduced in the cropping systems of the NCP it is therefore necessary to take the N mineralization potential of soils into account. Based on the results of this field experiment and others, a crop-soil interface model (HERMES) was calibrated and validated to the conditions of the NCP. Finally, this research observed the effect of wheat straw and the urease inhibitor (UI) N-(n-buthyl) thiophosphoric triamide (nBPT) on the turnover of urea, as well as the loss of ammonia and nitrous oxide from an alkaline soil of the NCP. UI inhibit or reduce the appearance of ammonia after the application of urea and almost completely prevent the loss of N as ammonia (urea: 12 – 14% loss). nBPT effectively reduces the rate of urea hydrolysis but does not down-regulate the process enough to completely inhibit nitrification, thereby maintaining the availability of N from urea for plants. Further, the addition of wheat straw prolongs the appearance of ammonium after the application of urea while the appearance of nitrate is reduced. Wheat straw may therefore either act as a stimulant of hydrolysis or as an inhibitor of nitrification. The addition of urea increases soil respiration and the emission of N2O drastically, possibly acting as a C and N source for microbial organisms and causing a priming effect on microbial activity in soils. This effect was increased further when wheat straw as well as urea were added to soil. nBPT, in contrast, prevents a significant increase in CO2-respiration and N2O-emission. The urease inhibitor may therefore generally restrict microbial activity or shift nitrification/denitrification processes towards the emission of N2.Publication Membrane transport and long-distance translocation of urea in Arabidopsis thaliana(2011) Bohner, Anne; von Wirén, NicolausUrea is a soil nitrogen (N) form available to plant roots and a secondary N metabolite liberated in plant cells by protein degradation, especially during senescence. Despite the fact that urea also represents the most widespread form in N fertilizers used in agricultural plant production, membrane transporters that might contribute to urea uptake in plant roots or urea retranslocation in senescent leaves have so far been characterized only in heterologous systems. The first part of the thesis investigated a role of the H+/urea cotransporter AtDUR3 in N nutrition of Arabidopsis thaliana plants. T-DNA insertion lines with a defective expression in AtDUR3 showed impaired growth on urea as a sole nitrogen source. In transgenic lines expressing an AtDUR3-promoter-GFP construct, promoter activity was upregulated under N deficiency and localized to the rhizodermis, including root hairs, as well as to the cortex in more basal root zones. The AtDUR3 protein accumulated in plasma membrane-enriched protein fractions, and AtDUR3 gene expression in N-deficient roots was repressed by ammonium and nitrate but induced after supply of urea. Higher urea accumulation in roots of wild-type plants relative to the T-DNA insertion lines confirmed that urea was the transported substrate of AtDUR3. Influx of 15N-labeled urea allowed the calculation of an affinity constant of 4 µM. These results indicated that AtDUR3 is the major transporter for high-affinity urea uptake in Arabidopsis roots and suggested that the high substrate affinity of AtDUR3 reflects an adaptation to the low urea levels usually found in unfertilized soils. A physiological function of urea and its transporters in leaves was investigated in the second part of the thesis. Currently it is unclear whether transport and metabolism of urea might limit the overall retranslocation of N during senescence. AtDUR3 transcript levels were only slightly de-repressed under N starvation, but strongly increased in senescent leaves. Urea concentrations in leaf samples of different plant and leaf age showed a strong increase after plants turned into generative growth. In parallel, mRNA as much as the protein abundance of AtDUR3 increased with leaf age. The analysis of leaf petiole exudates revealed that urea was indeed a translocated N form and urea-N represented approx. 13% of the total amino acid-N irrespective of the N status of the plant. Urea concentrations determined in apoplastic wash fluids supported a role of AtDUR3 in urea retrieval from the leaf apoplast, and transgenic AtDUR3-promoter-GUS lines indicated a localization of AtDUR3 promoter activity in the vasculature of old leaves. Thus, AtDUR3 might keep internal urea in the cytosol by urea retrieval from the apoplast, allowing urea to be transported to the vascular bundle, where it is either passively loaded to the phloem or converted into amino acids for long-distance N translocation. A strong daytime-dependent phenotype with shorter leaf petioles of an Arabidopsis line overexpressing AtDUR3 led to an in silico analysis of the AtDUR3 promoter sequence revealing that salicylic acid (SA) appears to induce AtDUR3 gene expression in senescent leaves. SA is well known for its involvement in the initiation of senescence. A strongly enhanced uptake capacity for 15N-labeled urea in N-sufficient Arabidopsis roots after SA pretreatment indicated that SA might be able to mimic N-deficiency conditions, paving the way to the possibility that SA builds a regulatory link between developmental and N deficiency-induced senescence.