Browsing by Subject "Heterosis"
Now showing 1 - 8 of 8
- Results Per Page
- Sort Options
Publication Assessing the Genetic Diversity in Crops with Molecular Markers: Theory and Experimental Results with CIMMYT Wheat and Maize Elite Germplasm and Genetic Resources(2004) Reif, Jochen Christoph; Melchinger, Albrecht E.Genetic diversity is a valuable natural resource and plays a key role in future breeding progress. Germplasm collections as a source of genetic diversity must be well-characterized for an efficient management and effective exploitation. The advent of PCR-based molecular markers such as sim-ple sequence repeats (SSRs) has created an opportunity for fine-scale genetic characterization of germplasm collections. The objective of this research was to optimize the utilization of genetic re-sources conserved at the International Wheat and Maize Improvement Center (CIMMYT), with the aid of DNA markers. Choice of suitable dissimilarity measures is important to facilitate the interpretation of findings from DNA marker studies on a theoretically sound basis. The objective of a theoretical study was to examine 10 dissimilarity coefficients widely used in germplasm surveys, with special focus on applications in plant breeding and seed banks. The distance and Euclidean properties of the dissimi-larity coefficients were investigated as well as the underlying genetic models. Application areas for different coefficients were suggested on the basis of the theoretical findings. It has been claimed that plant breeding reduces genetic diversity in elite germplasm, which could seriously jeopardize the continued ability to improve crops. The objectives of the presented ex-perimental study with wheat were to examine the loss of genetic diversity during (i) domestication of the species, (ii) change from traditional landrace cultivars (LC) to modern breeding varieties, and (iii) intensive selection over 50 years of international breeding. A sample of 253 CIMMYT or CIMMYT-related modern wheat cultivars, LC, and Triticum tauschii accessions were characterized with up to 90 SSR markers covering the entire wheat genome. A loss of genetic diversity was ob-served from T. tauschii to LC and from LC to the elite breeding germplasm. Wheat genetic diver-sity was narrowed from 1950 to 1989, but was enhanced from 1990 to 1997. The results indicate that breeders averted the narrowing of the wheat germplasm base and subsequently increased the genetic diversity through the introgression of novel materials. The LC and T. tauschii contain nu-merous unique alleles that were absent in modern wheat cultivars. Consequently, both LC and T. tauschii represent useful sources for broadening the genetic base of elite wheat breeding germ-plasm. In the 1980's, CIMMYT generated more than 100 maize populations and pools but little is known about the genetic diversity of this germplasm. The objective of the study with 23 CIMMYT maize populations was to characterize their population genetic structure with SSRs. The populations adapted to tropical, subtropical intermediate-maturity, subtropical early-maturity, and temperate mega-environments (ME) were fingerprinted with 83 SSR markers. Estimates of genetic differen-tiation between populations revealed that most of the molecular variation was found within the populations. Principal coordinate analysis based on allele frequencies of the populations revealed that populations adapted to the same ME clustered together and, thus, supported clearly the ME structure. Novel strategies were suggested to optimize the conservation of the genetic diversity within and among the populations. Heterotic groups and patterns are of fundamental importance in hybrid breeding. The objective of the presented study with a subset of 20 out of the 23 maize populations was to investigate the rela-tionship between heterosis and genetic distance determined with SSR markers. The published data of three diallels and one factorial trial evaluated for grain yield were re-analyzed to calculate het-erosis in population hybrids. Correlations of squared modified Rogers distance and heterosis were mostly positive and significant, but adaption problems caused deviations in some cases. For popu-lations adapted to the target regions, genetic distance can be used as a further criterion in the search for promising heterotic patterns and groups. For intermediate- and early-maturity subtropical germ-plasm, two heterotic groups were suggested, consisting of a flint and dent composite. For the tropi-cal germplasm, it was possible to assign population (Pop29) to the established heterotic group A and propose new heterotic groups (Pop25, Pop43). Our experimental results corroborate that SSRs are a powerful tool to (i) detect relationships among different germplasm, (ii) assess the level of genetic diversity present in germplasm pools and its flux over time, and (iii) search for promising heterotic groups for hybrid breeding in complementa-tion to field trials.Publication Design and assessment of breeding strategies for hybrid wheat in Europe(2018) Boeven, Philipp Hans Günter; Würschum, TobiasWheat is one of the top three global staple crops, possesses the largest global cultivation area, and plays a key role for the world’s future food security. However, its projected yield increase is insufficient to meet the future food and feed demand of an ever-growing world population. Consequently, the rate of breeding progress and productivity of wheat must be increased. Unfortunately, current wheat line breeding has a low return on investment mainly due to high levels of farm saved seeds, which makes wheat less attractive for the plant breeding industry and leads to lower investments and progress compared to other crops where the hybrid technology is established. Hybrid breeding is a worldwide success story in many crops but is not yet established in wheat. Hybrid wheat promises increased yield gain due to the exploitation of heterosis, higher yield stability and stabilized return on investments for breeding companies which warrants further investment and breeding progress in this important stable crop. The self-pollinating nature of wheat is a major bottleneck for hybrid seed production and efficient hybrid wheat breeding requires the redesign of the wheat floral architecture to enhance cross-pollination. Furthermore, the longterm success of hybrid wheat is crucially dependent on the establishment of heterotic groups, on the identification of a high yielding heterotic pattern, and finally, on the realized amount of heterosis and hybrid performance. Therefore, the main objectives of my thesis research were to: (i) analyze the genetic diversity and adaptation in a global winter wheat collection and evaluate how diversity trends could be used to support the development of heterotic groups in wheat; (ii) assess the relationship between heterosis and genetic distance under maximized diversity and evaluate the usefulness of exotic germplasm for hybrid wheat breeding; (iii) dissect the genetic architecture underlying male floral traits in wheat to enable genomics-assisted breeding approaches and investigate the trait seed set which is most crucial for an efficient hybrid seed production. The analyses of genetic diversity in a large worldwide panel of 1,110 winter wheat varieties released during the past decades showed no major population structure but revealed genetically distinct subgroups. Most of the global diversity trends could be explained by breeding history and were associated with geographical origin and long-term domestication. We found that the frequency of the copy number variants at the Photoperiod-B1 (Ppd-B1) and the Vernalization-A1 (Vrn-A1) loci reflect wheat adaptation to the environmental conditions of the different regions of origin. Thus, adaptation issues add an additional layer of complexity and hamper the direct introgression of genetic diversity to support the genetic divergence between heterotic pools. Based on all these analyses, we proposed HyBFrame, a unified framework illustrating how global wheat genetic diversity can be used to support and accelerate reciprocal recurrent selection for the development of genetically distinct heterotic groups in wheat. In a second experiment, we produced 2,046 wheat hybrids by crossing elite with elite lines as well as elite with exotic lines and performed multi-environmental field trials. Interestingly, we found an average midparent heterosis of about 10% in elite crosses as well as in exotic crosses and observed no evidence for a breakdown of heterosis under maximized genetic distance among the hybrid parents. Genetic distance based on genome-wide molecular markers revealed only a very weak association with midparent heterosis for grain yield. Here, we elaborated a functional Rogers’ distance giving weight to heterosis loci and observed a strong positive association between heterosis and this novel distance measure. Hence, considering the genetic architecture of heterosis revealed a more accurate picture of the relationship between heterosis and genetic distance. In addition, the genetic architecture of heterosis in wheat is crucially dependent on the genetic background. We found that a higher number of negative dominance and dominance-by-dominance epistatic effects can reduce the level of absolute heterosis in wide crosses between exotic lines and elite testers. Moreover, hybrid performance in wheat is mainly driven by parental per se performance. Thus, elite lines are favorable for hybrid breeding and should be employed as the starting material for heterotic grouping. Hybrid seed production is the major bottleneck for hybrid wheat breeding and explains the low market share of hybrid wheat varieties. Seed set on the female plants in crossing blocks is the most crucial trait for hybrid seed production in wheat. We tested 31 male lines and evaluated the hybrid seed set on two female tester lines in crossing blocks. Seed set showed a large genotypic variation and a high heritability suggesting that recurrent selection for increased seed set is feasible. The major problem is the synchronized flowering between male and female lines, making the evaluation of seed set in large panels very complex and difficult. Hence, indirect male floral traits with high correlation to the trait seed set would be promising to breed for improved hybrid seed production. We found a strong association between seed set and visual anther extrusion, underscoring that indirect male floral traits have a high potential for preliminary male screenings. We also dissected the genetic architecture underlying promising male floral traits and assessed the potential of genomics-assisted approaches for their improvement. We employed a panel of 209 diverse wheat lines and found a complex genetic architecture underlying all male floral traits. The Reduced height gene Rht-D1 was identified as the only major QTL, for which the commonly used height-reducing allele showed negative effects on male floral traits. This genetic architecture with many moderate- or small-effect QTL limits classical marker-assisted selection. In contrast, genomic prediction yielded moderate to high prediction abilities for anther extrusion. Finally, we proposed a breeding scheme to increase cross-pollination in wheat based on a combination of phenotypic and genomics-assisted selection. Taken together, hybrid breeding in wheat is a very promising approach and the next years will show if all of the current issues can be solved. This thesis research contributed to breeding strategies for hybrid wheat breeding and to the general understanding of heterosis in crops.Publication Genomic and phenotypic improvement of triticale (×Triticosecale Wittmack) line and hybrid breeding programs(2021) Trini, Johannes Philipp; Würschum, TobiasTriticale (×Triticosecale Wittmack) breeding is a success story as it evolved to a serious alternative in farmer’s crop rotations since the 1970s and is grown globally on around 4 million hectares today. New developments, however, pointed out additional possibilities to improve triticale line and hybrid breeding programs increasing its future competitiveness and were evaluated in this study. In more detail, these were to (i) examine the genetic control and evaluate long term genetic trends of plant height in Central European winter triticale, (ii) evaluate the potential of triticale hybrid breeding and hybrid prediction approaches in triticale with a focus on biomass yield, (iii) introduce and examine a concept bypassing the time and resource consuming evaluation of female candidate lines in cytoplasmatic male sterility (CMS) based hybrid breeding, and (iv) to draw conclusions for the future improvement of triticale line and hybrid breeding programs. The genome wide association study detected markers significantly associated with plant height and developmental stage, respectively. These explained 42,16% and 29,31% of the total genotypic variance of plant height and development stage and are probably related to four and three quantitative trait loci (QTL), respectively. The two major QTL detected for plant height were located on chromosomes 5A and 5R which most likely could be assigned to the known height reducing genes Rht12 from wheat and Ddw1 from rye. The third major QTL detected located on chromosome 4B could not be assigned to a known height reducing gene and it cannot be precluded, that these significantly associated markers are identifying one and the same QTL as the markers located on chromosome 5R, as these showed a high linkage disequilibrium amongst each other. Evaluating the 129 registered cultivars showed that plant height decreased since the 1980’s. Evaluating their genetic constitution revealed that most cultivars carried at least one height reducing QTL and that plant height could be reduced even further in cultivars combining more than one height reducing QTL. It was further observed that the frequency of cultivars carrying one or a combination of height reducing QTL increased since the 1980’s. A considerable amount of heterosis has been observed for biomass related traits in triticale hybrids before. However, the use of hybrid prediction approaches for these traits has not been evaluated. Hybrid prediction based on mid parent values already showed very good results illustrating their potential to preselect the most promising parents as prediction accuracies based on parental general combining ability (GCA) effects were only slightly better. When incorporating molecular markers into GCA based prediction accuracies, prediction accuracies decreased slightly compared to prediction accuracies solely based on phenotypic GCA effects. Predicting hybrids incorporating one or two untested parental lines, imitating a scenario where novel female and/or male candidate lines are introduced into a hybrid breeding program, reduced genomic prediction accuracies even further due to the decreasing amount of information which could be exploited from the parents. Additionally including specific combining ability (SCA) effects in the genomic prediction models did not yield additional use. A high proportion of SCA variance compared to the total genetic variance decreased prediction accuracies for the traits fresh and dry biomass yield. In this study simulation studies were used to demonstrate what a prediction accuracy of a specific value actually means for a hybrid breeding programs. Further, an approach was introduced and evaluated showing great potential to evaluate novel female candidate lines for their use in a CMS based hybrid breeding program by bypassing their time and resource demanding introgression into a male sterile cytoplasm using three way hybrids. Prediction accuracies obtained by this novel approach showed highly promising results for most evaluated traits compared to prediction accuracies based on GCA effects or mid parent performance. Additionally incorporating SCA effects into the prediction models showed only a little increase of the prediction accuracies. Further, the results were supported by simulation studies adjusting different parameters, such as the number of parents or the proportion of SCA variance compared to the total genetic variance.Publication Molecular and agronomic assessment of genetic diversity and hybrid breeding in triticale(2006) Tams, Swenja H.; Melchinger, Albrecht E.Knowledge of the genetic diversity of a species is of paramount importance for the choice of crossing parents in line and hybrid breeding. Genetic distance (GD) estimates based on molecular markers proved to be well suited for direct exploration of the relationship within a germplasm pool. Triticale hybrid breeding and heterosis have received increasing attention in recent years. Hybrid seed production is highly attractive for autogamous species because of the built-in variety protection of hybrids in comparison to line varieties. The main objective was to appraise the prospect of hybrid breeding in European winter triticale and develop time- and cost-reducing strategies. In particular, the main objectives were to (i) assess and compare genetic diversity estimates in European winter triticale elite germplasm based on molecular markers and pedigree data, (ii) determine hybrid performance and heterosis in multiple environments, and (iii) evaluate prediction methods for hybrid performance and heterosis to support future hybrid breeding programs. Average coancestry coefficient between all pairs of the 128 European elite genotypes was low (f = 0.059) due to scanty information available for the majority of the varieties and breeding lines. Better estimates of genetic distance of triticale genotypes were obtained by molecular marker assessment with 93 simple sequence repeat (SSR) markers and 10 PstI/TaqI primer combinations of amplified fragment length polymorphism (AFLP) markers. While SSR markers have been developed in wheat and rye and are mapped in the genome, the location and distribution of AFLP markers is unknown. Both marker systems resulted in reliable genetic diversity estimates. The moderate correlation between genetic distance estimate (GD) of SSR and AFLP marker analyses (GDSSR; GDAFLP) corresponded with other studies. Cluster analysis and principle coordinate analysis revealed no clear separation of germplasm groups. Supported by a bootstrap analysis, it was concluded that both marker systems provide consistent information for germplasm identification. The lack of grouping is in concordance with the breeding history of triticale as a self-pollinator, the wide adaptation of the inter-generic species and the single end-use purpose. Simultaneously to the marker assessment, 209 F1 hybrids were produced by a chemical hybridizing agent. The hybrids and their parents (57 females and five testers) were evaluated in field trials in six environments in Germany during the season 2001-2002. A combined analysis revealed significant heterosis for all eight traits. The level of mid-parent heterosis was positive for grain yield, 1000-kernel weight, number of kernels per spike, test weight and plant height and negative for number of spikes per m², falling number and protein concentration. Forty-six of the hybrids outyielded modern varieties, which were included as checks, by 10% and more. This aspect is important for the success of hybrids on the market for commercial production. Results regarding hybrid performance, heterosis, GCA/SCA relationship, trait correlation in hybrids and parents and aspects regarding cost-effective high quality F1 seed production appear to be sufficiently positive to encourage further work on hybrid breeding. Approaches to reduce time and costs for the identification of superior parental combinations and the prediction of hybrid performance revealed no reliable method yet. Correlations between SCA and GD of parents based on the different marker systems were low for all traits, which hampers prediction. Grouping of germplasm based on GD estimates or on heterotic response of the hybrids could not be discovered in triticale. As a consequence, a first step for an optimum allocation of resources in commercial hybrid breeding programs is the development of heterotic groups. In the present study, several females have been sub-grouped according to their heterotic response and SCA for grain yield with two tester pairs. Following the early history of hybrid breeding in maize, a multi-stage procedure was suggested for triticale to evaluate and expand the sub-grouping and enhance heterosis among groups.Publication Pearl millet breeding in West Africa : steps towards higher productivity and nutritional value(2018) Pucher, Anna Ida; Haussmann, BettinaThe enormous human population growth in West Africa (WA) in combination with serious production constraints is very problematic condition for food security. The alarming status of micronutrient deficiency in WA exacerbates this situation. For smallholder farmers improved and nutritious crop varieties derived from plant breeding could be a major contributor to enhancing agricultural productivity and reducing malnutrition. Pearl millet (Pennisetum glaucum (L.) R. Br.) is due to its high tolerance to drought and heat, capable to grow under very harsh environments, and is therefore a staple crop in Sahelian WA. Development of multiple pearl millet breeding approaches will be crucial to exploit the potential of this crop.The main goal of this study was to establish a scientific basis for more efficient pearl millet breeding in WA with a specific focus on achieving higher productivity and nutritional value. In order to accomplish this goal, the following objectives were defined: (I) to characterize a broad set of WA pearl millet accessions and to investigate their diversity and geographic patterns based on their phenotype; (II) to identify the potential and strategies to increase the micronutrient level in WA pearl millet; (III) to evaluate the performance of population hybrids and to derive initial strategies of pearl millet hybrid breeding in WA based on combining ability and heterotic patterns; and (IV) to identify molecular markers for the male-fertility restoration locus (Rf) for the A4 cytoplasmic-genic male-sterility (CMS) system in pearl millet using a genotyping-by-sequencing (GBS) based linkage map. The major results and conclusions of the four studies are summarized in the following:Characterization of a collection of 360 WA pearl millet landraces at six sites in WA identified wide ranges for 12 agro-morphological traits, which indicated a tremendous diversity. Principal component analysis revealed very large diversity within individual countries, and a high genetic admixture among WA pearl millet landraces. The high admixture indicates that heterotic grouping based on morphological distance or geographic distance is not possible. The published data of this study gives national breeders a basis to utilize this germplasm.In the second trial, pearl millet grain iron and zinc densities showed significant genetic variation in a set of 72 WA landraces evaluated at three sites and moderate-to-high heritability, which emphasizes a high potential for biofortification. Identified landraces with moderately high and stable micronutrient densities appear suitable for use in future WA biofortification breeding. Due to significant positive correlations among grain iron, zinc and other mineral densities and non-significant correlations between grain yield and mineral densities, selection for high grain iron and zinc density can be performed simultaneously without a negative effect on grain yield or contents of other micronutrients.The third trial evaluated 100 population hybrids and their 20 parental populations (with four parental open-pollinated varieties from each of five WA countries) at six environments and showed hybrid superiority of, on average, 16.7% compared to their parental populations (with a max. of 73%), reflecting the great potential of hybrid breeding. The mean grain yield of hybrids based on inter-country crosses did not differ significantly from intra-country crosses. Geographic distance between parents was not correlated with panmictic midparent heterosis, indicating that heterotic grouping based on geographic distance is not expedient. However, crosses between accessions from Niger/Nigeria and Senegal were outstanding, thus initial heterotic pools could be based on this information. In the long term, sustainable pearl millet hybrid breeding will require combining ability studies to develop heterotic groups.Within the fourth trial, a high-density linkage map based on single nucleotide polymorphism (SNP) markers produced by GBS was generated using a F2 mapping population, which segregated for fertility restoration of the A4 CMS system. A major Rf locus was found on linkage group 2, which was verified by cross-validation showing a very high quantitative trait locus (QTL) occurrence (97%). The QTL explained 14.5% of the phenotypic variance, which was below expectation because the segregation ratio of male-fertile and male-sterile plants (3:1) indicated monogenic dominant inheritance of this trait. The two KASP markers developed for the QTL will support high-throughput screening for the Rf locus and will facilitate the development of male parental pools exhibiting the fertility restoration, which is an essential step to enable economic pearl millet hybrid seed production. We can conclude that WA pearl millet breeding has the potential to increase the pearl millet productivity and nutritional value by utilizing the enormous pearl millet diversity in hybrid and biofortification breeding programs.Publication Prediction of hybrid performance in maize using molecular markers(2008) Schrag, Tobias; Melchinger, Albrecht E.Maize breeders develop a large number of inbred lines in each breeding cycle, but, owing to resource constraints, evaluate only a small proportion of all possible crosses among these lines in field trials. Therefore, predicting the performance of hybrids by utilising the data available from related crosses to identify untested but promising hybrids is extremely important. The objectives of this thesis research were to develop and evaluate methods for marker-based prediction of hybrid performance (HP) in unbalanced data as typically generated in commercial maize hybrid breeding programs. For HP prediction, a promising approach uses the sum of effects across quantitative trait loci (QTL) as predictor. However, comparison of this approach with established prediction methods based on general combining ability (GCA) was lacking. In addition, prediction of specific combining ability (SCA) is also possible with this approach, but was so far not used for HP prediction. The objectives of the first study in this thesis were to identify QTL for grain yield and grain dry matter content, combine GCA with marker-based SCA estimates for HP prediction, and compare marker-based prediction with established methods. Hybrids from four Dent × Flint factorial mating experiments were evaluated in field trials and their parental inbreds were genotyped with amplified fragment length polymorphism (AFLP) markers. Efficiency for prediction of hybrids, of which both parents were testcross evaluated (Type 2), was assessed by leave-one-out cross-validation. The established GCA-based method predicted HP better than the approach exclusively based on markers. However, with greater relevance of SCA, combining GCA with marker-based SCA estimates was superior compared with HP prediction based on GCA only. Linkage disequilibrium between markers was expected to reduce the prediction efficiency due to inflated QTL effects and reduced power. Thus, in the second study, multiple linear regression (MLR) with forward selection was employed for HP prediction. In addition, adjacent markers in strong linkage disequilibrium were combined into haplotype blocks. An approach based on total effects of associated markers (TEAM) was developed for multi-allelic haplotype blocks. Genome scans to search for significant QTL involve multiple testing of many markers, which increases the rate of false-positive associations. Thus, the TEAM approach was enhanced by controlling the false discovery rate. Considerable loss of marker information can be caused by few missing observations, if the prediction method depends on complete marker data. Therefore, the TEAM approach was improved to cope with missing marker observations. Modification of the cross-validation procedure reflected, that often only a subset of parental lines is crossed with all lines from the opposite heterotic group in a factorial mating design. The prediction approaches were evaluated with the same field data as in the previous study. The results suggested that with haplotype blocks instead of original marker data, similar or higher efficiencies for HP prediction can be achieved. Marker-based HP prediction of inter-group crosses between lines, which were marker genotyped but not testcross evaluated, was not investigated hitherto. Heterosis, which considerably contributes to maize grain yield, was so far not incorporated into marker-based HP prediction. Combined analyses of field trials from multiple experiments of a breeding program provide valuable data for HP prediction. With a mixed linear model analysis of such unbalanced data from nine factorial mating experiments, best linear unbiased prediction (BLUP) values for HP, GCA, SCA, line per se performance, and heterosis of 400 hybrids were obtained in the third study. The prediction efficiency was assessed in cross-validation for prediction of hybrids, of which none (Type 0) or one (Type 1) parental inbred was testcross evaluated. An extension of the established HP prediction method based on BLUP of GCA and SCA, but not using marker data, resulted in prediction efficiency intermediate for Type 1 and very low for Type 0 hybrids. Combining line per se with marker-based heterosis estimates (TEAM-LM) mostly resulted in the highest prediction efficiencies of grain yield and grain dry matter content for both Type 0 and Type 1 hybrids. For the heterotic trait grain yield, the highest prediction efficiencies were generally obtained with marker-based TEAM approaches. In conclusion, this thesis research provided methods for the marker-based prediction of HP. The experimental results suggested that marker-based HP prediction is an efficient tool which supports the selection of superior hybrids and has great potential to accelerate commercial hybrid breeding programs in a very cost-effective manner. The significance of marker-based HP prediction is further enhanced by recent advances in production of doubled haploid lines and high-throughput technologies for rapid and inexpensive marker assays.Publication Theoretical and experimental investigations on the exploitation of heterosis in hybrid breeding(2009) Fischer, Sandra; Melchinger, Albrecht E.Hybrid breeding has played a key role in the improvement of the productivity of many crops. Genetic variability, an essential prerequisite in plant breeding, is expected to decrease in heterotic groups as a result of continuous breeding efforts. The consequences of the narrowing of genetic variability are a decrease in selection gain and an increase in the susceptibility of cultivars. Thus, establishment of heterotic groups and broadening the genetic base of established heterotic groups are very important research topics in hybrid breeding. Our objectives were to (1) evaluate heterosis in winter triticale and identify heterotic groups based on field and SSR marker data, (2) investigate by field evaluations and SSR markers the heterotic relationships between the Central European heterotic groups in maize and rye and exotic germplasm from the US and Eastern Europe, respectively, and (3) monitor temporal changes over 30 years in the magnitude of variances due to general combining ability (GCA) and specific combining ability (SCA) in an applied hybrid maize breeding program. Triticale has low heterosis and, therefore, no hybrid cultivars have been developed, although an effective CMS system is available. Twenty-one lines and their 210 diallel crosses were field-evaluated for grain yield at five locations in Germany. 95 SSR markers were used to analyze the parents for identifying two diverse subgroups. Hybrid performance, midparent heterosis, and estimates of variance due to GCA and SCA were determined in a diallel, a 10 × 11 factorial, and the remaining two sub-diallels with 10 and 11 parents. In addition, we applied an enumeration algorithm, which explored the entire sample space to identify diverse heterotic groups and optimize different criteria in this context. The ratio of variance due to GCA to variance due to SCA was higher for factorials between groups of parents than in diallels and subdiallels within groups. The analyses indicated a more favorable ratio in situations with genetically distinct populations compared to situations with genetically less distinct populations. Application of the enumeration algorithm improved all criteria. F1 performance followed by heterosis were the most important criteria for development and enrichment of heterotic groups. Introgression of new germplasm to broaden the genetic base of heterotic groups is required to ensure continued genetic gains in hybrid breeding. In maize, we evaluated 19 inbreds belonging to two Central European heterotic groups and US heterotic groups and their factorial crosses in F1 and F2 generations for grain yield and dry matter concentration. The parental inbreds were additionally fingerprinted with 266 SSR markers. Multi-environment evaluation was performed in three mega-environments: Central Europe, US Cornbelt, and Southeast Europe. We found higher genetic diversity in the exotic germplasm than in the Central European heterotic groups. Based on F1 performance and heterosis, we conclude that non-Stiff Stalk germplasm should be introgressed into the Flint group and the Stiff Stalk germplasm into the Dent group. In rye, we evaluated testcrosses of 610 S0 clones belonging to the two Central European heterotic groups and five East European open-pollinated varieties (OPVs). S0 clones were fingerprinted with 30 SSR markers. We found higher genetic diversity in the OPVs compared to the Central European heterotic groups. The Carsten group had a narrow genetic base and should, therefore, be the primary target for genetic broadening. Nevertheless, all five OPVs were genetically closer to Petkus than Carsten. Two OPVs were identified as good candidates for introgression into Petkus and one into Carsten. We suggest to use selected clones of these populations for introgression. Continuous selection is expected to narrow the genetic base of heterotic groups over time. We studied the nature and magnitude of genetic variability in the breeding materials of the maize program of the University of Hohenheim, which is based on two heterotic groups with continuous enrichment by other germplasm. The data generated in multilocation field trials based on inter-group factorial designs conducted from 1975 to 2004 for grain yield and dry matter concentration were analyzed. There was neither a decrease in the magnitude of genetic variance nor a change in the predominance of variance due to GCA over variance due to SCA. Consequently, for avoiding the adverse effects of selection on genetic variation and for ensuring medium and long-term selection gains, heterotic groups should not be treated as closed populations, but should be continuously enriched by introgression of new germplasm.Publication Untersuchungen zur Bedeutung der Stickstoffeffizienz für die Ertragssicherheit bei Mais(2002) Thiemt, Elisabeth-M.; Geiger, Hartwig H.Increased fertilization with nitrogen (N) in maize production areas often leads to pollution. Maize varieties with improved N-use efficiency under low soil N conditions can therefore contribute to sustainable agriculture. The objectives of this study were to investigate, whether i) hybrids with special adaptation to low soil nitrogen condition show higher yield stability than those which were selected in high nitrogen environments , ii) N-efficient hybrids are more tolerant to drought conditions, iii) combination of parent lines with differences in N-efficiency leads to increased heterosis , and iiii) hybrids show differences concerning components of N-efficiency, in particular N-uptake and N-utilization efficiency. A set of hybrids was generated with parent lines showing superior testcross performance at low or high N-levels, designated L-lines and H-lines, respectively. Field trials were conducted in 14 environments: each trial was grown under high (NH) and low (NL) nitrogen level. Under NL-conditions LxL-hybrids outyielded HxH-hybrids significantly, while at NH the HxH-hybrids showed higher grain yield than LxL hybrids. N-efficient hybrids did not show increased drought tolerance. LxL-hybrids tended to have higher yield stability than HxH-hybrids. Significant increase of heterosis for the traits dry matter yield and dry matter content was not found, neither at NL nor at NH-level. Under NL-conditions N-uptake was reduced, but N-utilization efficiency increased.