Browsing by Subject "High-fat diet"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Publication Characterization of dietary and genetic influences on the gastrointestinal microbiota(2023) Bubeck, Alena Marie; Fricke, Florian W.Although the gut microbiota is known to contribute fundamentally to human health, e.g. by promoting the maturation of the immune system and intestinal homeostasis, the factors shaping its composition are only poorly understood. Extrinsic and intrinsic influences can disturb the tightly controlled equilibrium between the microbiome and the host and induce dysbiosis, which has been linked to diverse health conditions such as obesity, atherosclerotic cardiovascular disease (ACVD) and inflammatory bowel disease (IBD). Therefore, understanding events leading to microbial perturbations and the prediction of associated health outcomes could aid in the prevention and treatment of these conditions. In this work, the impact of dietary and genetic factors on gastrointestinal microbiota compositions were determined, with the diet serving as an exemplary extrinsic, modifiable microbiota-relevant factor and with a genetic deficiency in a mouse model for intestinal inflammation serving as an exemplary intrinsic, non-modifiable microbiota-relevant factor. In both studies, microbial communities obtained from either a human or a murine cohort, respectively, were taxonomically characterized by 16S rRNA gene amplicon sequencing and analyzed in the context of metabolic and inflammatory implications for the host. In ACVD, the reduction of excess blood cholesterol, which is a main risk factor, is tackled by clinical interventions aiming to reduce cholesterol uptake from exogenous, dietary sources or by inhibiting endogenous cholesterol biosynthesis. Cholesterol-to-coprostanol conversion by the intestinal microbiota has also been suggested to reduce intestinal and serum cholesterol availability, but the dependencies of cholesterol conversion on specific bacterial taxa and dietary habits, as well as its association with serum lipid levels remain largely unknown. To study microbiota contributions to human cholesterol metabolism under varying conditions, fecal microbiota and lipid profiles, as well as serum lipid biomarkers, were determined in two independent human cohorts, including individuals with (CARBFUNC study) and without obesity (KETO study) on very low-carbohydrate high-fat diets (LCHF) for three to six months and six weeks, respectively. Across these two geographically independent studies, conserved distributions of cholesterol high and low-converter types were measured. Also, cholesterol conversion was most dominantly linked to the relative abundance of the cholesterol-converting bacterial species Eubacterium coprostanoligenes, which was further increased in low-converters by LCHF diets, shifting them towards a high-conversion state. Lean cholesterol high-converters, which were characterized by adverse serum lipid profiles even before the LCHF diet, responded to the intervention with increased LDL-C, independently of fat, cholesterol and saturated fatty acid intake. These findings identify the cholesterol high-converter type as a potential predictive biomarker for an increased LDL-C response to LCHF diet in metabolically healthy lean individuals. Although the etiology of IBD has not been fully resolved, an interplay between the intestinal microbiota, environmental factors and an individual’s genetic susceptibility is thought to trigger chronic inflammation by a dysregulation of the immune response in the gut. To identify colitis-associated microbiota alterations throughout the development of spontaneous colitis, mice with a genetic deficiency of the anti-inflammatory cytokine Interleukin-10 (IL-10) from different litters were co-housed with wild-type mice and monitored for 20 weeks. The scoring of mice based on their phenotype and stool consistency mirrored the state of mucosal inflammation as assessed based on histopathological examinations and cytokine expression profiles. Also, the state of colitis was characterized by global microbiota alterations and susceptibility to colitis was dependent on litter-specific microbiome compositions that mice adopted early on in their lives. Colitis development was further associated with the presence of the bacterial genus Akkermansia in mature mice shortly before symptoms manifested. This genus was also a good predictor of colitis-related mice withdrawal, suggesting the potential of Akkermansia to serve as an early onset, subclinical colitis marker. In summary, fecal microbiota characterizations in response to LCHF diets in humans and throughout the development of intestinal inflammation in a colitis mouse model highlight the potential of personalized microbiome-based patient classifications to predict clinical outcomes and improve treatment approaches.Publication Oral intake of the microalgae Nannochloropsis oceanica, Chlorella vulgaris, or Phaeodactylum tricornutum improves metabolic conditions in hypercaloric-fed mice(2024) Kopp, Lena; Seethaler, Benjamin; Neumann, Ulrike; Bischoff, Stephan C.Diet-induced metabolic load is associated with excess body weight and liver steatosis. Here, selected microalgae, known to contain bioactive nutrients, were studied for beneficial metabolic effects in a mouse model of liver steatosis. Adult mice (8 per group) were fed either a Western-style diet (WSD) or a control diet +/ 15 % of the microalgae Chlorella vulgaris (CV), Nannochloropsis oceanica (NO), or Phaeodactylum tricornutum (PT) for 12 weeks. We evaluated liver fat content and liver damage, as well as fecal microbiota and lipopolysaccharide (LPS) translocation. NO supplementation to a WSD reduced the grade of liver steatosis (from 17 % to 4.7 %, p < 0.002), the liver damage score (p < 0.001), and LPS translocation (p < 0.001). PT had similar effects on liver damage score (p < 0.001) and LPS translocation (p < 0.001). CV supplementation reduced LPS translocation (p < 0.001). In conclusion, dietary supplementation of microalgae may be a novel sustainable approach to combat metabolic loads.Publication The role of NLRC5 in obesity(2024) Bauer, Sarah Katharina; Kufer, ThomasObesity and its associated morbidities are major global health problems. It has become evident in the last decades that the state of obesity is intimately linked with our immune system. Pattern recognition receptors (PRRs), the main sensor molecules of the innate immune system, were shown to play an essential role in the pathology of obesity and its associated morbidities. Among others, members of the nucleotide-binding and oligomerization domain (NOD) -like receptors (NLRs), a family of cytosolic PRRs, were associated with the obesity-accompanying low-grade inflammatory response contributing to obesity-associated morbidities. NLRC5 is a NLR protein functioning as key transcriptional regulator of major histocompatibility complex (MHC) class I genes responsible for antigen presentation. Recent observations now suggest novel roles of NLRC5 in metabolic trades, but so far, no confirmation of these singular observations is available, and the underlying mechanisms remain elusive. The aim of this thesis was to characterize the role of the NLR protein NLRC5 in obesity. To this end, two Nlrc5 deficient mouse lines (Nlrc5 deltaExon4-7 and Nlrc5 deltaExon4) were subjected to high-fat diet (HFD) feeding and phenotypic, morphological, and biochemical analyses were performed. Female Nlrc5 deltaExon4-7 mice presented with higher body and adipose tissue (AT) weight gain and larger adipocytes compared to wildtype (WT) animals. This phenotype, however, could not be recapitulated in the Nlrc5 deltaExon4 mouse line. Microbiome analysis revealed subtle alterations of the faecal microbiome by diet:genotype interactions. To further characterize the effect of NLRC5 deficiency on adipocyte differentiation, the CRISPR/Cas9 gene editing system was used to modify Nlrc5 expression in the 3T3-L1 preadipocyte cell line. Using inducible HeLa cell lines with stable GFP-NLRC5 expression we showed NLRC5 to interact with the master regulator of adipogenesis peroxisome proliferator-activated receptor y (PPARy) and to enhance the expression of PPARy target genes. In addition, a contribution of NLRC5 to PPARy’s anti-inflammatory actions was revealed using NLRC5 deficient THP-1 macrophage-like cells and bone marrow-derived macrophages from Nlrc5 deltaExon4-7 mice. To elucidate the mechanism behind the synergy between NLRC5 and PPARy, reporter gene and chromatin immunoprecipitation (ChIP) assays were performed. Lastly, the expression of multiple NLR family members was correlated with body mass index (BMI) in obese human patients and investigated in the adipose tissue and liver of HFD-fed mice, the latter revealing Nlrp10 to be highly upregulated by HFD feeding. Taken together, this thesis provides a comprehensive characterization of Nlrc5 deficient mice on HFD and reveals a function of NLRC5 as transcriptional co-regulator of PPARy targets and its anti-inflammatory properties. In addition, this work provides first insights into the potential mechanism behind the synergistic transcriptional regulation by NLRC5 and PPARy and extends the knowledge on the regulation of NLR expression by HFD feeding.