Browsing by Subject "Histone"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Publication Antimikrobielle Aktivität der Histone bei chronisch entzündlichen Darmerkrankungen(2017) Kunkel, Yasmin; Stange, Eduard F.The human intestine harbours a multitude of microorganisms. In addition to its func-tion as a protective layer against pathogens, it has to prevent an excessive immune answer against commensales simultaneously. Antimicrobial Peptides (AMPs) with their cationic character are playing an essential role in protection, because they are able to form voltage dependent channels on the surface of microorganism, which kill pathogens. In addition to the classical AMPs more antimicrobial active polypeptides, such as members of the histone family, were isolated. Histones are alkaline proteins, which are components of the chromatine. They are foremost responsible for packaging the DNA and for posttranslational modifications. Five different families can be differentiated: the core histones H2A, H2B, H3 and H4, as well as the linker histone H1. While extracellular histones show strong antimicrobial activity against a broad spectrum of microorganisms, the mechanism of their toxicity has not yet been sufficiently determined. If the antimicrobial protection layer of the intestine is weakened, due to a diminished expression of AMPs for instance, microorganisms can penetrate the mucosa and trigger inflammations. These findings have been confirmed in different tissues of patients with inflammatory bowel diseases (IBD), such as Crohn’s disease (CD) and ulcerative colitis (UC). The aim of this work is to determine whether histones play a role in IBD. In the first part a systematic analysis of the transcriptome (Q-PCR) and the transla-tome (Western Blotting) of the core histones of colonic tissue was performed. In tis-sues of patients with CD gene expression data showed generally an increase of his-tones. In the cases of H2A and H2B the increase was significant. The quantification on the protein level offered an extreme variance of the expression of all core histones, irrespective of the analysed group. Significant differences were not detected. However, in trend H2B was lower in inflammation. After the systematic analysis, histones were then isolated of human colonic tissue. Before the extracted histones were fractionated via RP-HPLC and screened via MALDI-TOF-MS, different methods for the isolation of histones had been compared. The antimicrobial activity of the isolated histones of different intestinal tissues and mucus showed no differences between healthy controls and patients with IBD in flow cytometric tests. A significant increase of the histone activity in inflamed tissues of UC was only detected against S. aureus. The impact of the extracted histones seems to be strain-specific and higher against gram-positive species. As expected, extracel-lular histones could be detected in the mucus by immunehistological staining. Through ELISAs, protein concentrations of H2A and H2B were determined in the mucus and thus a slight increase of the histone proteins in UC was observed. In the last part of this work, the interactions of recombinant histones among them-selves and with other AMPs were analysed by flow cytometric viability assays. A strain-specific increase of the antimicrobial activity of histones among themselves and with AMPs was found. Thereby synergistic effects occurred frequently. The in-teractions of histones against several bacteria were visualised by electron microscope images and furthermore an agglutination of the microorganisms as well as a massive loss of cell integrity were detected. Variantions of the histones’ transcriptome and the translatome, as well as variations of the antimicrobial activity of histones in CED would have been evaluated as patho-logic defects. However, in this work such effects could not been confirmed. Because of their enormous antimicrobial activity histones still play an important role in the protection against microorganisms in the colon. Further studies have to show, if his-tones possess a therapeutic potential, and if they can be used as new antibiotics. This work was able to verify the strong potential of histones against different pathogens, which is absolutely comparable with the potential of classic AMPs, and could pro-mote inspiration for subsequent studies.Publication Functional characterization of the COOH-terminal kinase activity of the TBP-associated factor TAF1(2006) Maile, Tobias; Sauer, FrankActivation of eukaryotic transcription involves an orchestrated interplay between transcription factors and the general RNA polymerase II (Pol II) transcription machinery (GTM), which consists of Pol II and general transcription factors (GTFs). The GTF TFIID consists of the TATA-box binding protein (TBP) and several TBP-associated factors (TAFs). The binding of TFIID to promoters can nucleate transcription. TAF1 is the largest subunit of TFIID and plays a central role within the nucleating function of TFIID in transcription. TAF1 mediates the binding of TFIID to promoters and interacts with enhancer-bound transcription factors and several GTFs. Additionally, TAF1 contains four enzymatic activities that are essential for viability of eukaryotes and mediate posttranslational modification of GTFs and histones. TAF1 is a bipartite protein kinase and contains an NH2-terminal kinase domain (NTK) and a COOH-terminal kinase domain (CTK). A previous study demonstrated that the CTK phosphorylates serine-residue 33 in histone H2B (H2BS33). However, the role of TAF1-mediated phosphorylation in transcription regulation remained unknown. In this study, the functional importance of H2BS33 phosphorylation (H2BS33P) by TAF1 was investigated by using a combination of biochemical and in vivo assays. In vitro kinase assays uncovered the two essential kinase motifs in TAF1CTK, the ATP-binding motif and the serine/threonine-specific catalytic motif, and indicate that the TAF1 CTK has intrinsic kinase-activity. Western blot analysis using an antibody to H2BS33P revealed that H2BS33 is phosphorylated in Drosophila. RNA-interference (RNAi) assays, designed to attenuate TAF1 expression (TAF1RNAi), revealed that TAF1 is a major kinase for H2BS33 in Drosophila Schneider cells. Flow-cytometry analysis of TAF1RNAi cells indicated that loss of TAF1 expression results in cell cycle arrest in G2/M-phase. Screening the transcription of cell cycle genes in TAF1RNAi cells by using reverse-transcriptase-PCR demonstrated that the transcription of the cell cycle gene string (stg) is reduced in the absence of TAF1. Chromatin immunoprecipitation assays (XChIP) indicate that H2BS33P is detectable at the transcriptionally active stg promoter but not at the silent stg promoter in TAF1RNAi cells. These results demonstrate that phosphorylation of H2BS33 is involved in stg transcription. XChIP-assays using chromatin prepared from Drosophila embryos, which express a mutant TAF1 lacking the CTK, revealed that CTK-mediated phosphorylation of H2BS33 plays an essential role in the activation of transcription of the Drosophila segmentation gene giant. In vitro kinase assays demonstrate that Bdf1 and Bdf2, the yeast homologues of the TAF1CTK, phosphorylate histones suggesting that the kinase activity of the TAF1CTK is phylogenetically conserved. The results of this work demonstrate that TAF1CTK is a major histone kinase of H2BS33 and that TAF1-mediated phosphorylation of H2BS33 plays an essential role in the transcription events during cell cycle progression and development.Publication Nuclear activation of proteasome in oxidative stress and aging(2009) Catalgol, Betul; Grune, TilmanPoly(ADP-ribosyl)ation reactions are of interest in recent years and they take place in DNA repair in different processes especially following oxidative nuclear damage. Proteasomal reactions also take place in repair following oxidative nuclear damage with the degradation of oxidized histones. Antitumor chemotherapy is generally believed to act via the oxidation of nuclear material in the tumor cells. Adaptation to oxidative stress appears to be one element in the development of long-term resistance to many chemotherapeutic drugs. The 20S proteasome has been shown to be largely responsible for the degradation of oxidatively modified proteins in the nucleus. Tumor cells are supposed to have a higher nuclear proteasome activity than do nonmalignant cells. Poly(ADP-ribosyl)ation reactions take place in the tumor cells as a consequence of chemotherapy. Such a reaction might occur with the 20S proteasome ?which is known to increase the activity- and also with histones ?which is firstly shown to decrease the degradation in this study. After hydrogen peroxide treatment of HT22 cells, degradation of the model peptide substrate suc-LLVY-MCA and degradation of oxidized histones in nuclei increased accompanied by an increase in PARP-1 mRNA expression. In the recovery of the level of protein carbonyls, single strand breaks and 8-OHdG, proteasome and PARP-1 were shown to play a role together. This was tested with inhibitor treatments. The proteasomal activation following poly(ADP-ribosyl)ation of proteasome and the decrease in poly(ADP-ribosyl)ation of histones and increase in the proteasomal degradation of histones following H2O2 treatment confirmed our hypothesis. The second part of the thesis shows the changes in PARP-1 and proteasome in different aged fibroblasts with population doublings 19, 36, and 56. The nuclear protective mechanisms were shown to be effected during the senescence process. PARP-1 protein amount decreased whereas there was no change in proteasome amount. PARP activation following H2O2 treatment increased only in young and middle aged cells. In the nuclear extracts of young and old cells, poly(ADP-ribosyl)ation potentials were tested with NAD+ addition into the reaction. In addition to that active proteasome and PARP enzymes were added into the reaction and proteasome activity was measured. With active PARP, proteasome activity was increased both in young and old cells whereas there was no increase in old cells without PARP addition. These results show that proteasome activation is mainly limited by PARP activity. Taken together all results demonstrate the importance of PARP mediated proteasome activation in the repair of oxidatively damaged chromatin.