Repository logo
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
    Communities & Collections
    All of hohPublica
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
  1. Home
  2. Browse by Subject

Browsing by Subject "Histone deacetylase"

Type the first few letters and click on the Browse button
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Publication
    Funktionelle Analyse der Histondeacetylase 6 sowie experimentelle Modellierung von Lateralitätsdefekten während der Links-Rechts-Achsenentwicklung von Xenopus laevis und Paracentrotus lividus
    (2017) Tisler, Matthias; Blum, Martin
    Vertebrates display an asymmetric positioning of the visceral organs, which is also denominated as left-right body axis. During embryogenesis, an asymmetric gene expression is detectable that is initiated by an evolutionary conserved mechanism of symmetry breakage, which is conserved among deuterostomes. During neurula stages, rotating motile mono-cilia at the so called left-right organizer (LRO) generate an asymmetric stimulus known as extracellular leftward fluid flow that is essential for the unilateral left asymmetric gene expression of the Nodal cascade. Spontaneous mutations or the experimentally induced loss of function of genes influencing ciliogenesis at the LRO, the induction of the Nodal cascade or its propagation lead to left-right defects. Left-right defects are frequently observed in human conjoined twins. Thoracopagous, dicephalic conjoined twins display defects in the arrangement of the inner organs, that are solely reported from the twin located to the right side. While left twins orient the inner organs wildtypically, right twins show a randomization of the left-right axis. The functional cause of the inverted arrangement regarding the right twin has remained enigmatic. It has been hypothesized that the observed laterality determination in conjoined twins, like in wildtype embryos, was dependent on leftward flow. In the course of this thesis, the known unilaterlal left-sided induction of the Nodal cascade in the left conjoined twin, as in singelton embryos, can be linked to leftward flow. The artificial induction of a second body axis leads to a subsequent duplication of the LRO during development. During flow stages endogenous and induced LROs locate in close proximity and display a partial fusion of cell populations. Anti-sense Morpholino Oligomeres or methylcelluose mediated loss of cilia motility lead to a loss of markergene expression in the left-lateral plate mesoderm of the left twin. By combining differential gain- and loss-of-function strategies, it was possible to link the establishment of laterality in conjoined twins to the leftward flow and, moreover, to manipulate it an a predictable manner. The cause of this hitherto enigmatic laterality defects in conjoined twins can therefore be explained by the evolutionary conserved mechanism of left-right establishment. Although the general mechanism of symmetry breakage has been characterized, novel candidate genes are continously beeing identified that act at a specific sequence of this process. The candidate gene histonedeacetylase 6 (hdac6) was shown to impact on left-right development. Anti-sense Morpholino Oligomere induced loss-of-function experiments led to left-right defects in a dose dependent manner regarding, the induction of the genes of the Nodal cascade, indicating a function of hdac6 before fluid flow induced regulation of dand5 mRNA. Taken together: histonedeacetylase 6 acts as modulator of canonical Wnt-signaling in the transcriptional induction of the Wnt-dependent transcription of foxj1, a master control gene of the biogenesis of motile cilia. Loss of Hdac6 leads to defects regarding the ciliogenesis of motile cilia at the LRO as well as the multiciliated epidermis of the embryo. The here presented results represent the first developmental hdac6 loss-of-function phenotype, which was so far not know from Hdac6-/- mice. These experiments shed a new light on the differential in vivo function of this unique histondeacetylase during development. Even though the asymmetric positioning of the inner organs is restricted to vertebrates, the asymmetric expression of the Nodal cascade turns out to be evolutionary conserved among deuterostomes. Comparable to vertebrate species, larvae of the sea urchin (Paracentrotus lividus, Echinodermata) display an asymmetric expression of the Nodal cascade in the ectoderm an during gastrula stages. Experiments from this work could demonstrate that also in sea urchin embryos the asymmetric gene expression depends on motile cilia. The archenteron of gastrula stage embryos was identified and described as homologous structure to vertebrate LROs. Deciliation experiments at different time points of development induce laterality defects and point towards a symmetry breakage during early gastrulation. By this experiments, the cilia dependent establishment of left-right asymmetry is described as a common synapomorphy of the deuterostomes beeing conserved from sea urchin to vertebrates, shedding a new light on the establishment of asymmetric gene expression.

  • Contact
  • FAQ
  • Cookie settings
  • Imprint/Privacy policy