Browsing by Subject "Hordeum vulgare"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Publication Bridging genomics and genetic diversity : association between sequence polymorphism and trait variation in a spring barley collection(2009) Haseneyer, Grit; Geiger, Hartwig H.Association analysis has become common praxis in plant genetics for high-resolution mapping of quantitative trait loci (QTL), validating candidate genes, and identifying important alleles for crop improvement. In the present study the feasibility of association mapping in barley is investigated by associating DNA polymorphisms in selected candidate genes with variation in grain quality traits, plant height, and flowering time to gain further understanding of gene functions involved in the control of these traits. (1) As a starting point a worldwide collection of spring barley (Hordeum vulgare L.) accessions has been established to serve as an association platform for the present and possible further studies. This collection of 224 accessions, sampled from the IPK genebank, consists of 109 European, 45 West Asian and North African, 40 East Asian and 30 American entries. Forty-five EST derived polymorphic SSRs were used to determine the genetic structure. The markers were equally distributed over all seven chromosomes. Phenotypic data were assessed in field experiments performed at three locations in 2004 and 2005 in Germany. (2) Seven candidate genes were considered. Fragments of these genes were amplified and sequenced in the established collection. Single nucleotide polymorphisms (SNPs), haplotype variants, and linkage disequilibrium (LD) were investigated. (3) One gene was additionally analysed in 42 bread wheat (Triticum aestivum L.) accessions in order to compare barley and wheat for nucleotide diversity and LD. (4) Association analysis between SNPs and haplotype variants of the selected candidate genes and the phenotypic variation in thousand-grain weight, crude protein content, starch content, plant height, and flowering time was used to identify candidate genes influencing the variation of these traits in spring barley. A mixed model association-mapping method was employed for this purpose. In the established collection, significant genotypic variation was observed for all traits under study. Genotype×environment interaction variances were much smaller than the genotypic variances and heritability coefficients exceeded 0.9. Statistical analyses of population stratification revealed two major subgroups, mainly comprising two-rowed and six-rowed accessions, respectively. Within the sequenced fragments (13kb) of the seven candidate genes, 216 polymorphic sites and 93 haplotypes were detected demonstrating a moderate to high level of nucleotide and haplotype diversity in the germplasm collection. Most haplotypes (74.2%) occurred at a low frequency (<0.05) and therefore were rejected in the candidate gene-based association analysis. Pair-wise LD estimates between the detected SNPs revealed different intra-gene linkage patterns. The 45 SSR markers used for analysing the population structure revealed low intra- and interchromosomal LD (r²<0.2). Significant marker-trait associations between the candidate genes and the respective target traits were identified. The barley and wheat genes showed a high level of nucleotide identity (>95%) in the coding sequences, the distribution of polymorphisms was also similar in the two species, and both map to a syntenic position on chromosome 3. However, the genes were different in both collections with respect to LD and Tajima?s D statistic. In the barley collection only a moderate level of LD was observed whereas in wheat, LD was absolute between polymorphic sites located in the first intron while it decayed by distance between the former sites and those located downstream the first intron. Differences in Tajima?s D values indicate a lower selection pressure on the gene in barley than in wheat. In conclusion, the established association platform represents an excellent resource for marker-trait association studies. The germplasm collection displays a wide range of genotypic and phenotypic diversity providing phenotypic data for economically important traits and comprehensive information about the nucleotide and haplotype polymorphism of seven candidate genes. Association results demonstrate that the candidate gene-based approach of association mapping is an appropriate tool for characterising gene loci that have a significant impact on plant development and grain quality in spring barley.