Repository logo
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
    Communities & Collections
    All of hohPublica
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
  1. Home
  2. Browse by Subject

Browsing by Subject "Iron partitioning"

Type the first few letters and click on the Browse button
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Publication
    Iron partitioning and photosynthetic performance in Cannabis sativa L. reveal limitations of nanoscale zero-valent iron as a fertilizer
    (2025) Büser, Christian; Hartung, Jens; Deurin, Lukas; Graeff-Hönninger, Simone
    Iron (Fe) is the fourth most abundant element in the Earth’s crust but remains the third most limiting nutrient for crop productivity due to its low solubility in most soils. The emergence of nanotechnology has introduced nanoscale zero-valent iron (nZVI) as a potential Fe fertilizer with high surface reactivity and improved bioavailability. However, its comparative efficacy relative to conventional chelated Fe sources remains poorly understood. This study investigated Fe partitioning, photosynthetic efficiency, biomass accumulation, and cannabinoid synthesis in Cannabis sativa L. grown hydroponically under Fe-EDTA, nZVI, or Fe-deficient (-Fe) treatments. Total Fe concentrations were markedly reduced in -Fe plants compared with both Fe-EDTA and nZVI treatments. Despite similar root Fe contents between Fe-EDTA and nZVI, only Fe-EDTA facilitated efficient translocation to shoots, while nZVI-derived Fe predominantly accumulated in roots. Consequently, nZVI-treated plants exhibited intermediate photosynthetic performance and water-use efficiency—lower than Fe-EDTA but significantly higher than -Fe. Although Fe translocation differed substantially, inflorescence biomass and cannabinoid yield were comparable between nZVI and Fe-EDTA treatments, both exceeding those of -Fe plants. These results suggest that yield reductions under Fe deficiency arise not solely from Fe scarcity but also from the metabolic costs of Strategy I Fe acquisition, which are partially circumvented by root Fe availability from nZVI. Overall, Fe-EDTA demonstrated superior nutrient use efficiency, whereas nZVI partially alleviated Fe deficiency and revealed distinctive interactions between nanomaterials and plant Fe physiology. This study advances understanding of nZVI as an alternative Fe source in C. sativa and provides new insights into nanoparticle–plant nutrient dynamics.

  • Contact
  • FAQ
  • Cookie settings
  • Imprint/Privacy policy