Browsing by Subject "Kritische Periode"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Effects of weeds on yield and determination of economic thresholds for site-specific weed control using sensor technology(2014) Keller, Martina; Gerhards, RolandWeeds can cause high yield losses. Knowledge about the weeds occurring, their distribution within fields and their effects on the crop yield is important to achieve effective weed control. The critical period for weed control (CPWC) and the economic threshold (ET) are important key concepts and management tools in weed control. While the former helps to time weed control in crops of low competitiveness, the latter provides a decision aid to determine whether weed control is necessary. This decision is generally taken at the field level. Weeds have been found to be distributed heterogeneously within fields. Site-specific weed control (SSWC) addresses this sub-field variation by determining weed distribution as input, by taking control decisions in the decision component and by providing control measures as output at high spatial resolution. Sensor systems for automated weed recognition were identified as prerequisite for SSWC since costs for scouting are too high. While experiences with SSWC using sensor data as input are still scarce, studies showed that considerable herbicide savings could be achieved with SSWC. ETs can serve as thresholds for the decision component in SSWC systems. However, the commonly used ETs were suggested decades ago and have not been updated to changing conditions since. The same is the case for the CPWC in maize in Germany. In addition, the approaches to determine the CPWC are usually not based on economic considerations, which are highly relevant to farmers. Thus, the objectives of this thesis are: 1. To test different models and to provide a straightforward approach to integrate economical aspects in the concept of the CPWC for two weed control strategies: Herbicide based (Germany) and hoeing based (Benin); 2. To determine the effect of weeds on yield and to calculate ETs under current conditions which can be used for SSWC; 3. To evaluate the use of bi-spectral cameras and shape-based classification algorithms for weed detection in SSWC; and 4. To determine changes in weed frequencies, herbicide use and yield over the last 20 years in southwestern Germany. Datasets in maize from Germany and Benin served as input for the CPWC analyses. The log-logistic model was found to provide a similar fit as the commonly used models but its parameters are biologically meaningful. For Germany, analyses using a full cost model revealed that farmers should aim at applying herbicides early before the 4-leaf stage of maize. In Benin, where weed control is mainly done by hoeing, analyses showed that one well- timed weeding operation around the 10-leaf stage could already be cost-effective. A second weeding operation at a later stage would assure profit. The precision experimental design (PED) was employed to determine the effect of weeds, soil properties and herbicides on crop yield in three winter wheat trials. In this design, large field trials’ geodata of weed distribution, herbicide application, soil properties and yield are used to model the effects of the former three on yield. Galium aparine, other broadleaved weeds and Alopecurus myosuroides reduced yield by 17.5, 1.2 and 12.4 kg ha-1 plant-1 m2 determined by weed counts. The determined thresholds for SSWC with independently applied herbicides were 4, 48 and 12 plants m-2, respectively. Bi-spectral camera based weed–yield estimates were difficult to interpret showing that this technology still needs to be improved. However, large weed patches were correctly identified. ETs derived of field trials’ data carried out at several sites over 13 years in the framework of the ’Gemeinschaftsversuche Baden-Württemberg’ were 9.2-9.8 and 4.5-8.9 % absolute weed coverage for winter wheat and winter barley and 3.7% to 5.5% relative weed coverage for maize. Overall, the weed frequencies in winter cereals were found to be more stable than the weed frequencies in maize during the observation period. In maize, a frequency increase of thermophilic species was found. Trends of considerable yield increases of 0.16, 0.08 and 0.2 t ha-1 for winter wheat, winter barely and maize, respectively, were estimated if weeds were successfully controlled. In order to evaluate the use of bi-spectral cameras and shapebased classification algorithms for weed detection in SSWC, herbicides were applied site-specifically using weed densities determined by bi-spectral camera technology in a winter wheat and maize field. Threshold values were employed for decision taking. Using this approach herbicide savings between 58 and 83 % could be achieved. Such reductions in herbicide use would meet the demand of society to minimize the release of plant protection products in the environment. Misclassification occurred if weeds overlapped with crop plants and crop leaf tips were frequently misclassified as grass weeds. Improvements in equipment, especially between the interfaces of camera, classification algorithms, decision component and sprayer are advisable for further trials. In conclusion, the derived ETs can be easily implemented in a straightforward SSWC system or can serve as decision aid for farmers in winter wheat and winter barley. Further model testing and adjusting would be necessary. For maize, the use of ETs at the field level is not suggested by this study, however the need for early weed control is clearly demonstrated. Bi-spectral camera technology combined with classification algorithms to detect weeds is promising for research use and for SSWC, but still requires some technical improvements.Publication Unkrautbekämpfung in Zuckerrüben - Ermittlung der Kritischen Periode(2003) Kobusch, Henner; Hurle, KarlEarly leaf stages of sugar beet are very sensitive to weed competition, which is a major reason for the absence of thresholds for weed control in sugar beet. In combination with non-selective herbicides, the use of herbicide resistant sugar beets appears to allow the control of weeds at a later date than usual applications of common selective herbicides. Therefore, it is necessary to know the critical period, in which the crop should be weed free in order not to loose yield. The influencing factors of the critical period are the moment until weed can be tolerated (beginning of the critical period) and the moment after weed can be tolerated (end of the critical period). The primary objective of the present work was the establishment of a parameter, which would allow a determination of the critical period independent of location and season. Therefore, triannual field trials were carried out at three different sites in the Ukraine and in Stuttgart-Hohenheim in order to evaluate the suitability of different parameters. In addition, by use of a glufosinat resistant sugar beet transformant, the practicability of the critical period was investigated. Application of the critical period and moreover the definition of a general period threshold requires a reference value defining the beginning and end of the critical period which is both independent of location and season. The primary aim of this work was to establish a parameter, which fulfills this condition. All parameters relate to the growth of sugar beet or of the weed quantify their interaction. The following parameters were investigated: the leaf stage of the sugar beet, the weed and sugar beet coverage level, the relative weed coverage, the temperature sum and the intensity of weed shading of the beets. The investigation took place at three separate sites in the Ukraine and in Stuttgart-Hohenheim enabling the effect of different sites to be taken into account. A uniform sugar beet leaf stage until and after weeds could be tolerated was not found. The leaf stage until weeds could be tolerated varied between the 2 and 10 leaf stage. Similarly the leaf stage after which the weeds could be tolerated varied between the 2 and 12 leaf stage of the beet. A uniform and therefore location and year-independent degree of sugar beet coverage and weed coverage relating to leaf stage was not found at the beginning of the critical period at the Hohenheim site (1999 and 2000) and Poltava (1999) in the Ukraine. The degree of weed cover varied at the beginning of the critical period between 96.7% and 66.5% in Hohenheim. The same applies to the degree of sugar beet coverage which varies between 5.3% and 15%. The difference between the two levels of coverage is almost completely compensated by the parameter relative weed coverage. At the Hohenheim site it only varied between 94.8% and 84.5%. The minimum value was found at Poltava with 83.8%. On this basis, a maximum relative weed coverage of 83 % can be tolerated without significant yield loss. Herewith, a decisive parameter is defined as a measure for timing weed control in sugar beets. However, an important requirement is the availability of efficient control methods at this certain point of time. In a further step an attempt was made to apply the critical period in relation to the leaf stage of the beet by using a glufosinate resistant sugar beet transformant. In no trail it could be waited with glufosinate applications until the beginning of the critical period. The latest leaf stage, when glufosinate application had to start in Poltava and Vinnitsa was the 6-leaf stage, whereas the critical period began at the 10- or 12-leaf stage. A limiting factor for the definitive application of the beginning of the critical period was shown in the field trials by a decreasing tolerance of the glufosinate resistant transformant at ever later leaf stages of beet development. Prediction model investigations confirmed this correlation. In addition to the effect of the leaf stage the effect of weather conditions was also apparent. The increase in air humidity from 50 % to 80 % led to an increase in NH3 concentration in the resistant transformant, regardless of its leaf stage. NH3 is found in non-resistant plants due to the inhibition of glutamine-synthetase by glufosinate, which leads to cell death. The largest increase in NH3 when the air humidity was increased from 50 % to 80 % occurred at the youngest leaf at the 6-leaf stage. In addition to the dependency of NH3 concentration on leaf stage the effect of leaf age was also apparent. Concluding, the control of weeds, related to the leaf stage of glufosinate resistant sugar beet, has to be done before the critical period begins. Unfortunately, technologies, which offer the possibility to control weeds by an integration of the critical period, are so far not available.