Browsing by Subject "Lagerung"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Physiological responses of 'Jonagold' apple (Malus domestica Borkh.) following postharvest 1-Methylcyclopropene (1-MCP) application(2009) Heyn, Claudia Susanne; Wünsche, Jens NorbertStorage technologies such as controlled atmosphere (CA) storage and recently 1-Methylcyclopropene (1-MCP) treatments have led to an all-year-round global supply of high qualitative apple fruit. As a consequence, pressure of competition between several apple growing areas is increasing and in the same way consumers demands and expectations for apple fruit quality. However, throughout storage fruit quality is generally preserved at a high level whereas conditions at several points throughout the distribution chain are often not adequate for fresh commodities. It is critically important to maintain consistently high fruit quality throughout the marketing period to the final consumer and that fruit quality at the point of sale meets consumer requirements. Although decision for purchasing apple fruit is mainly due to appearance and firmness, consumer are increasingly concerned about nutritional quality and health-protecting compounds in foods. The plant hormone ethylene influences many of the ripening processes in climacteric fruit such as apple. Several storage conditions, such as reduced storage temperatures, controlled storage atmospheres with low O2- and elevated CO2-concentrations and recently 1-MCP treatments are known methods to minimize ethylene biosynthesis, ethylene sensitivity and responses of harvested climacteric fruit and by that to slow metabolic changes during ripening. 1-MCP is an effective tool for maintaining fruit quality during storage and post-storage handling. 1-MCP, a synthetic unsaturated cyclic olefin, is thought to act as a competitive substance to ethylene, occupying the ethylene receptor site so that ethylene cannot bind. In general, 1-MCP is able to counteract ripening effects triggered by ethylene during and after storage by blocking its action in fruit rather than inhibiting its production. The present research project consists of three studies. The aim of the first study was to determine the effect of 1-MCP treatment, storage condition and ?duration on apple fruit quality and consumer acceptability. The second part of the study focused on the effect of 1-MCP treatment, storage condition and ?duration on climacteric characteristics of apple fruit. The effect of 1-MCP treatment, storage condition and ?duration on antioxidant capacity of apple fruit was studied in the third part of the research. ?Jonagold? apple fruit were picked at commercial maturity in 2004, 2005 and 2006. Fruit were treated with 1-MCP on the day of harvest (0 days after harvest, 0 DAH) in 2004 and 7 DAH in 2005 and 2006 and stored the following day either in cold storage, CA- or ultra low oxygen- (ULO) storage. Fruit was held in cold storage prior to commencement of storage in 2005 and 2006. After 2, 4 and 6 months in 2004/05, 3, 6 and 9 months in 2005/06 and 3 and 5 months in 2006/07 fruit samples from each storage atmosphere ± 1-MCP were removed. Fruit quality parameters were assessed after harvest, commencement of storage and after each sample removal in 2004/05, 2005/06 and 2006/07 following 10 days shelf-life at 20°C. Consumer preference mapping was performed after 3 and 5 months of cold- and ULO-storage in 2006/07. Shelf-life respiration rate and fruit ethylene production was measured after harvest, commencement of storage and after each sample removal in 2004/05 and 2005/06, respectively. In 2005/06 ATP and ADP concentration was additionally determined. Nutritional quality and health-protecting compounds were examined by means of ascorbic acid concentration (L-AA), phenolic compounds and total non-enzymatic antioxidant capacity in 2005/06 following 10 days shelf-life after harvest, commencement of storage and after each sample removal. The results of the first part of the study showed that fruit quality generally decreased during storage and shelf-life depending on 1-MCP treatments, storage condition and ?duration. However, 1-MCP delayed ripening more and maintained fruit quality better than CA- or even ULO-storage alone. In consumer preference mapping most consumers, regardless of age or gender, preferred the 1-MCP treated fruit from ULO-storage. This effect was particularly seen when fruit were stored longer. Though sensory evaluation studies are time-consuming and there might be some flaws and difficulties to generate representative results from consumer taste panels, they are a useful tool to assess food quality and consumer preference. The results of the second part of the study proved that 1-MCP is a potent antagonist in terms of reducing and delaying ethylene production and respiratory rise. Although CA- and ULO-storage reduced ethylene production significantly in ?Jonagold? apples, 1-MCP treatment inhibited ethylene biosynthesis and accompanied respiration rate more than CA- and ULO-storage alone. The present study clearly shows that apple fruit shall be exposed as soon as possible to 1-MCP treatment and appropriate storage conditions after harvest for achieving a maximum effect on reduction of climacteric characteristics and maintenance of postharvest and post-storage apple fruit quality. L-AA concentration significantly decreased during storage, irrespective of storage condition and 1-MCP treatment. At commencement of storage L-AA concentration in 1-MCP treated fruit was higher than in untreated control fruit. However, following 9 months of storage L-AA concentration was lower in all 1-MCP treated fruit when compared with untreated fruit. Vitamin C equivalent phenolic concentration and vitamin C equivalent antioxidant capacity (VCEAC) decreased after 6 months of storage and gradually increased again after 9 months of storage. 1-MCP treatment had no effect on phenolics and VCEAC, respectively. In general, the results of the third part of the study showed that the nutritional value of apple fruit was not influenced by 1-MCP and storage condition.Publication Preharvest and postharvest factors affecting the quality profile of onion landraces(2021) Romo-Perez, Maria Luisa; Zörb, ChristianOnion cultivation has been practiced for over 4000 years and does not exist as a wild species. Over time onions have adapted to different climates, creating a wide range of varieties and landraces. Today, in modern agriculture, commercial onion breeders focus almost exclusively on conventional farming which increases the demand for certain well-known varieties and hybrids but lowers the diversity available in the mainstream market. Additionally, a clear need for new varieties of onions is heralded by organic farming systems, where pesticides and chemical fertilizers are banned. A way to preserve biodiversity and enrich the range of varieties available in organic farming systems is to re-evaluate traditional landraces and introduce their benefits to the broader public. Onions are known for their good storability, particular aroma, as well as for their health-promoting benefits due to the rich content of non-structural carbohydrates, flavonoids, and S-containing compounds. However, the quality status and sensorial characteristics of onions can be influenced through preharvest and postharvest factors. Some of those factors are genotype, soil, and storage conditions. Preharvest abiotic factors such as soil salinity can lead to several reduction of yield and quality aspects. Much like many other vegetable species, onions have always been classified as salt-sensitive crop. However, to date, there was very little evidence to that claim, and information about the impact of salinity on onion quality and physiology is lacking. This thesis aims to characterize onion landraces and compare them using targeted and untargeted metabolomics with commercial cultivars when grown under organic farming conditions. A part of this is evaluating the differences of landrace metabolite profile and the storage impact after five months of cold storage. Furthermore, this thesis discusses the effect of increased soil salinity on the metabolism and physiology of onion plants. In chapter 2, yield and quality aspects of studied onion varieties demonstrated that landraces can achieve similar or even better results than modern varieties Sturon and Red Baron when grown under organic farming conditions of South-West Germany. Furthermore, differences between Sturon and landraces demonstrated that parts of the aromatic and flavor properties found in landraces have been lost in modern genotypes (Chapter 3). These results indicate that the maximum potential of the modern onion varieties has not yet been reached and further optimization of their yield and quality parameter could be attained through future breeding programs that include local landraces. Among the studied landraces, Birnförmige, Stunova, and Rijnsburger 4 are the most interesting and promising candidates. For instance, Birnformige demonstrated not only good storability but also high levels of S-containing compounds and fructans. Stunova presented good yield stability and capacity, while Rijnsburger 4 exhibited the highest levels of amino acids suitable as precursors of aromatic substances as well as good storability. Despite several reports claiming that onions are sensitive to salinity, chapter 4 of this thesis demonstrated there is no reduction in plant growth, quality, or aroma in onion plants after moderate Na+ treatments. Nevertheless, in comparison with the landrace Birnformige, modern variety Sturon showed a slight increase of compatible solutes by Na+ accumulation, demonstrating that the potential of certain varieties for onion production under increased soil salinity is actually much higher than previously assumed.