Browsing by Subject "Lepidoptera"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Publication Integrative taxonomy, systematics and biogeography of geometrid moths in a Middle Eastern biodiversity hotspot(2023) Wanke, Dominic; Krogmann, LarsIran is an important biodiversity hotspot in the world. Recent studies have shown that two of the 36 global biodiversity hotspots are located in Iran: The Irano-Anatolian and the Caucasian hotspots. These two hotspots include parts of the two mountain ranges in Iran, the Alborz Mountains and the Zagros Mountains, which are crucial for the biodiversity, hosting a large number of endemic species. However, climate change and anthropogenic activities threaten its diversity. This study uses geometrid moths as a model group to better understand general patterns of biodiversity and zoogeography in Iran. Geometridae are suitable for such studies and scientifically interesting for several reasons: The family is species-rich with nearly 24,000 known species worldwide (539 known species in Iran), the species have short life-cycles and thus react quickly to environmental changes, and they occupy specialized ecological niches. Knowledge of Palearctic geometrid moths is rather advanced compared to other regions. The Western Palearctic, in particular, has been the target of considerable research. However, this is not the case for regions in the Middle East and Central Asia, where much is still unknown and further research is crucial. To fill this gap for geometrid moths in this region, data on their species richness and distribution patterns were collected to reveal regions with special faunal elements. Therefore, this dissertation consists of three parts, each of which contributes an essential element to achieve these goals. The first part deals with the taxonomic problems of partially species-rich and morphologically very difficult genera within the three subfamilies Sterrhinae (Problepsis, Scopula, Cinglis, Pseudocinglis, Scopuloides, Glossotrophia, Zygophyxia); Geometrinae (Xenochlorodes); and Ennominae (Nychiodes, Synopsia, Synopsidia, Eumera). Type specimens and original descriptions were used for critical revisions to understand the diagnostic characters of the species. Additionally, large series of specimens from many different museums and private collections were examined to highlight morphological variations. Using an integrative taxonomic approach that includes morphological and molecular data, a total of one new genus and four new species were described and 37 taxonomic changes (e.g., new synonyms, new combinations) were made. The second part addresses genera with uncertain tribal affiliation or questionable taxonomic status, which were also partially targets of the taxonomic revisions. A multi-gene phylogenetic analysis was performed using one mitochondrial gene and up to nine nuclear genes, sequences generated as part of this work and sequences from published phylogenetic studies were taken to run the analyses. As a result, the genus Eumera was determined to belong to the tribe Prosopolophini, the genera Cinglis and Scopuloides were removed from synonymy with Scopula, two genera were synonymized (Glossotrophia, Pseudocinglis), and two species were transferred to a different genus (Problepsis wiltshirei, Aphilopota tyttha). In the third part, distribution data of Iranian Geometridae was used to identify biodiversity hotspots and regions of high endemism. In addition, a network-based method was used to divide the country into unique bioregions and highlight areas with specific faunal elements. As a result, an exceptional species richness was found along the two main mountain ranges, Zagros in the west and south and Alborz in the north. Considering only the endemic species, the southern mountain areas were identified as the most species-rich regions. The bioregionalization analysis also identified six main bioregions. Most of these bioregions reflect specific faunal structures and are in accordance with previous studies. This highlights the complex species composition in Iran and demonstrates the exceptional biodiversity of the country. In addition, our results indicated two transition zones between zoogeographical realms. Of the six zoogeographical realms defined by Wallace, three occur in Iran meeting in the south of the country: The Palearctic and Saharo-Arabian along the foothills of the Zagros Mountains and the Palearctic and Oriental in southeastern Iran. At these transition zones, Iran has very specific faunal elements of the Geometridae, which makes these zones important for conservation. Overall, this work contributes to a better understanding of the biodiversity of geometrids in Iran and neighboring countries. It serves as a resource for the identification of species, their distribution and habitats, which are of great interest for conservation efforts in Iran and neighboring countries.