Browsing by Subject "Marginal land"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Publication Approaches to improve the implementation and expansion of Miscanthus production(2016) Xue, Shuai; Lewandowski, IrisSeveral species within the miscanthus genus (Miscanthus spp.) are characterized by high biomass yields and low production input requirements. This raised increasing interests in their applications for bioenergy. However, to date, only small areas of Miscanthus × giganteus (approximately 40,000 ha) are commercially grown and used for generating electricity and heat in Europe, where miscanthus has been developed as bioenergy crop for more than decade. Reviewing state-of-the-art revealed four main factors limiting the implementation of miscanthus production. These are inefficient and expensive propagation techniques, land use dilemma (i.e. lack of land available for growing miscanthus), lack of varieties/genotypes adapted to various and especially to stressful environmental conditions and lack of efficient agronomic practices for miscanthus establishment. Against these limiting factors, this thesis aims to (1) evaluate the different propagation systems with regard to technologies and costs, and improve the preferred rhizome propagation techniques; (2) address the land use dilemma through exploring marginal land (i.e. non-arable land with ability to grow plants with tolerance to environmental stresses) for miscathus production; (3) and screen optimal genotypes and effective practices for establishing and managing miscanthus on marginal land in a case study on grassland. To achieve the first objective, a review, our own field trials and farmer surveys were performed. Direct seed sowing was found to be the cheapest propagation method (1,508.5 € ha-1 overall establishment costs) and micro-propagation the most expensive (6,320.8 € ha-1). Direct rhizome planting is the farmers’ most preferred and most applied establishment method and has moderate establishment cost of 1,904-3,375.7 € ha-1. However, it goes along with the lowest propagation efficiency (1:10) and consequently restricts the availability of propagation material for large-scale plantations. However, the multiplication ratio can be increased by reducing the rhizome size. Field trial results showed that 6-cm length is close to the minimum size of rhizome that can germinate after directly planting into field. Compared to the traditionally used macro-rhizome, the multiplication ratio of the improved rhizome propagation (using 6-cm rhizomes) is tripled. In addition, the multiplication ratio can also be increased by transplanting rhizome- or stem-derived plantlets. However, due to higher labour and energy inputs required for the pre-growing of plantlets, their establishment cost reduction potential is limited, with estimated costs of 4,240.8-4,400.8 € ha-1. Direct seed sowing as the cheapest method is presently only possible for Miscanthus sinensis and not yet practical under German conditions. In addition, the seed-setting rate of M. sinensis is very low (0.0-28.7%) under the climatic conditions of south-west Germany, making commercial seeds production difficult. For all the propagation methods considered, more research efforts are still required to reduce the material production costs and simultaneously increase the multiplication ratio. For the second objective, the production potential of miscanthus on marginal land in China was assessed. Because China has limited agricultural land resources and its non-food bioenergy policy (it is only allowed to grow energy crops on marginal land) is adamant, there is a desideration for exploiting its marginal land potential. In this study, Geographic Information System (GIS) techniques, model simulation were adopted to identify the productive marginal areas for miscanthus and to estimate their biomass and bioenergy production potentials. The results show that in China there are large marginal land areas of 17,163.54 × 104 ha available for growing miscanthus. However, due to limitation by low winter temperatures and low precipitation levels in some areas, the total marginal area suitable for growing miscanthus is only 769.37 × 104 ha. The Monteith radiation yield model was used to determine the potential miscanthus yield in Chinese climatic conditions. The simulation gave the actual harvestable yield levels on arable land of 18.1-44.2 odt ha-1 yr-1. Taking the environmental stresses of marginal conditions into account an achievable miscanthus yield potential on marginal land of 2.1-32.4 odt ha-1 yr-1 was calculated (varying between different marginal land types). Based on these achievable yield levels, the total miscanthus production potential on the entire suitable marginal land areas is 13,521.7 × 104 odt yr-1; the corresponding bio-electricity generation and total greenhouse gas saving potentials are 183.9 TW h yr-1 and 21,242.4 × 104 t CO2 eq. yr-1, respectively. The spatial distribution of the suitable marginal areas shows that they are mainly concentrated in the central part of Northeast China and the Loess Plateau. Both regions are recommended as priority development zones for the Chinese miscanthus-based bioenergy industry. However, implementation of this huge marginal land potential is currently constrained by many barriers, e.g. concerns on potential ecological effects, competition for marginal land from other uses, lack of high yield varieties in marginal conditions. Lack of varieties with suitability to marginal conditions and efficient agronomic practices for the establishment on marginal land are the main barriers that limit using marginal land for miscanthus production. Therefore, stress tolerant varieties need to be selected and methods of effective establishment of miscanthus on marginal land need to be developed. Worldwide, grassland is the most important marginal land type because it has the largest terrestrial area and mild environmental stresses for growing energy crops (including miscanthus). However, it is undesirable or even legally prohibited to convert grassland into bioenergy cropland to avoid biodiversity loss and soil carbon being reduced by tilling practices. Hence, no-till establishment practices for miscanthus establishment and maintenance on grassland are investigated here under the third objectives. Our study demonstrates that miscanthus can be successfully cultivated on both good (nutrient-rich) and marginal (nutrient-poor) grassland using the proposed agronomic practices and an increased grassland productivity may be achieved through the establishment of suitable miscanthus genotypes. The recommended agronomic practices are summarized as following. Miscanthus genotypes with tall, thick shoots perform better than those with short, thin shoots. Better establishment is achieved when rhizome-derived plantlets are transplanted into pre-disturbed grassland. The grassland pre-disturbance of low vegetation cutting (5 cm) and herbicide spraying in narrow stripes is recommended for its beneficial effect on miscanthus establishment without significant negative effects on grassland productivity. Two harvests, one in late spring and one in late autumn, are optimal to achieve a high grassland yield. In this thesis, the limitation of the inefficient propagation technique was mitigated through minimizing the rhizome size and exploring the seeds propagation potential. The land-use dilemma was alleviated by exploring the marginal land production potential. Additionally, constrains of lack of genotypes and agronomic practices for the miscanthus establishment on marginal land were improved by field trials on grassland (the most important marginal land type with a huge potential).These results can improve the implementation and expansion of miscanthus production. However, in addition to constrains improved in this thesis, the miscanthus production is currently constrained by many other technical, economic and financial, social and political, environmental issues. It is unlikely that the implementation and expansion will achieve without mitigating these constrains. Further research and support should address these barriers in an integrate manner.Publication Developing marginal‐land‐based bioeconomy systems — A design and development approach for bio‐based value chains and webs(2025) Schlecht, Valentin; Vargas‐Carpintero, Ricardo; von Cossel, Moritz; Lewandowski, Iris; Schlecht, Valentin; Biobased Resources in the Bioeconomy, University of Hohenheim, Stuttgart, Germany; Vargas‐Carpintero, Ricardo; Biobased Resources in the Bioeconomy, University of Hohenheim, Stuttgart, Germany; von Cossel, Moritz; Biobased Resources in the Bioeconomy, University of Hohenheim, Stuttgart, Germany; Lewandowski, Iris; Biobased Resources in the Bioeconomy, University of Hohenheim, Stuttgart, GermanyIndustrial crops grown on marginal lands offer a potential source of low-iLUC feedstock for bio-based industries, supporting sustainable bioeconomic development. However, marginal-land-based bioeconomy systems face significant uncertainties at early stages, such as limited data, farmers' hesitancy to adopt novel crops, undeveloped markets and immature technologies. This study implements an integrated multi-criteria framework as a structured, multi-step approach to connect bio-based value chain components and stakeholders in marginal-land-based bioeconomy systems at the research level. The framework was applied within the EU Horizon project MIDAS to identify, evaluate and combine bio-based value chain components, with a case study in the Swabian Alb (southern Germany) demonstrating its potential for designing scalable bio-based value chains tailored to regional conditions. Key findings emphasise the importance of stakeholder collaboration, iterative design processes and context-specific criteria that address technical, economic, social and regulatory aspects. The approach, based on qualitative data and stakeholder input, offers critical insights into the feasibility of biomass-to-product pathways and serves as a foundation for advanced research. Future research needs to focus on expanding data availability, incorporating quantitative methods, and addressing economic and market factors, such as stakeholder willingness to produce feedstocks, to enhance the scalability and robustness of the findings and facilitate the establishment of sustainable bioeconomy systems on marginal lands.Publication Ertragsbildung und Konkurrenzverhalten perennierender Körnerfruchtarten in Rein- und Mischbeständen auf marginalen Standorten(2002) Weik, Lena; Aufhammer, WalterCultivation of perennial grain crops in pure and mixed stands was examined as a possibility for preserving marginal arable land. The following questions were investigated: - Which dry matter and grain yield potential do these species display on marginal lands? - Are the examined species able to persist on marginal sites? - Can effects of competition be identified in mixed stands of perennial grain crops by commonly used static and dynamic parameters? - Which competitiveness do the examined species show in mixed stands compared to pure stands? In field experiments perennial species of rye (Secale cereale x S. montanum), intermediate wheatgrass (Elymus hispidus), lupine (Lupinus polyphyllus) and linseed (Linum perenne) were grown in pure and different mixed stands. Intermediate wheatgrass reached with a maximum at almost 13 t ha-1 highest dry matter yields. Grain yields were on a low level, maximum yields were obtained with 2.7 t ha-1 in pure stands of rye. Intermediate wheatgrass and lupine demonstrated the best ability for perennialism. Rye showed a satisfactory ability to persist only when grown in mixture with legumes. The persistence of linseed was very low. The relative yield total (RYT) was found to be a suitable static indicator of resource complementarity. Competitive ability was appropriately described by the competitive balance index (Cb). Regression models derived from Lotka-Volterra equations rendered a good description of dynamic growth and competition. Both grass species were in most cases stronger competitors than the companion species. The experiments showed, that using grain cop mixtures of grasses and legumes seem to be most promising for cultivation on marginal lands.Publication Testing agronomic treatments to improve the establishment of novel miscanthus hybrids on marginal land(2025) Lewin, Eva; Clifton-Brown, John; Jensen, Elaine; Lewandowski, Iris; Krzyżak, Jacek; Pogrzeba, Marta; Hartung, Jens; Wolfmüller, Cedric; Kiesel, Andreas; Lewin, Eva; Department Biobased Resources in the Bioeconomy, University of Hohenheim, 70599 Stuttgart, Germany; Clifton-Brown, John; Department of Agronomy and Plant Breeding, Justus Libeig University Giessen, 35392 Giessen, Germany; Jensen, Elaine; Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3EE, UK; Lewandowski, Iris; Department Biobased Resources in the Bioeconomy, University of Hohenheim, 70599 Stuttgart, Germany; Krzyżak, Jacek; Institute for Ecology of Industrial Areas, 40-844 Katowice, Poland; Pogrzeba, Marta; Institute for Ecology of Industrial Areas, 40-844 Katowice, Poland; Hartung, Jens; Sustainable Agriculture and Energy Systems Department, University of Applied Science Weihenstephan-Triesdorf, 91746 Freising, Germany; Wolfmüller, Cedric; Department Biobased Resources in the Bioeconomy, University of Hohenheim, 70599 Stuttgart, Germany; Kiesel, Andreas; Department Biobased Resources in the Bioeconomy, University of Hohenheim, 70599 Stuttgart, Germany; Fujii, YoshiharuMiscanthus is considered a promising candidate for the cultivation of marginal land. This land poses unique challenges, and experiments have shown that the “establishment phase” is of paramount importance to the long-term yield performance of miscanthus. This experiment analyzes novel miscanthus hybrids and how their establishment on marginal land can be improved through agronomic interventions. Experiments took place at two sites in Germany: at Ihinger Hof, with a very shallow soil profile and high stone content, and at Reichwalde, where the soil was repurposed river sediment with low organic matter, high stone content, and a compacted lower horizon. These marginal conditions functioned as test cases for the improvement of miscanthus establishment agronomy. Four hybrids ( Miscanthus x giganteus , Gnt10, Gnt43, and Syn55) and agronomic treatments such as plastic mulch film, miscanthus mulch, inoculation with mycorrhizal fungi, and fertilization were tested in two years at both sites in 2021 and 2022. Specific weather conditions and the timing of planting were strong determinants of establishment success and no single treatment combination was found that consistently increased the establishment success. Plastic mulch films were found to hinder rather than help establishment in both these locations. Chipped miscanthus mulch caused nitrogen immobilization and stunted plant growth. At Ihinger Hof the novel seed-based miscanthus hybrid Gnt43 produced twice the biomass of other hybrids (7 t ha −1 ) in the first growing season. Gnt10 yielded well in 2021 and showed impressive tolerance to water stress in the summer of 2022. No treatment combination was found that consistently increased the establishment success of miscanthus hybrids across sites and years. Novel genotypes consistently outperformed the standard commercial miscanthus hybrid Miscanthus x giganteus . Gnt10 may be a promising candidate for the cultivation of water-stress-prone marginal lands, due to its isohydric behavior and high yield potential.