Browsing by Subject "Micronutrients"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Publication Environmental and farm management effects on food nutrient concentrations and yields of East African staple food crops(2021) Fischer, Sahrah; Cadisch, GeorgHidden hunger affects two billion people worldwide, particularly children and pregnant women. Human health and well-being are dependent on the quality and quantity of food consumed, particularly of plant-based foods. Plants source their nutrients from the soil. Essential nutrients for both, plants and humans, therefore, predominantly originate from the soil. Very little is known about the influence of environmental factors (e.g. soil types and abiotic factors, such as weather), or farm management choices (e.g. fertilisation or agrobiodiversity), on nutrient concentrations of edible crop parts. The main aim of this thesis was, therefore, to analyse the effects of soil fertility, farm management, and abiotic factors such as drought, on the quantity (yields) and quality (nutrient concentrations) of essential macro- (Mg, P, S, K, Ca) and micronutrients (Fe, Zn, Mn and Cu), of the edible parts of three East African staple food crops, i.e. maize (Zea mays L.), cassava (Manihot esculenta} Crantz), and matooke (East African Highland Banana (Musa acuminata Colla)), and discuss the resulting implications for food and nutrition security. Two research areas were selected in East Africa, one with a high fertility soil (Kapchorwa, Uganda - Nitisol) and one with a low fertility soil (Teso South, Kenya – Ferralsol). In each region, 72 households were randomly selected, and leaf and edible crop parts, and soil samples collected on three fields per household, organised by distance (closest, mid-distance, and farthest field). Maize and cassava were collected in Teso South, maize and matooke were collected in Kapchorwa. Yields, fertilizer usage and species richness (SR) and diversity (SD) were recorded per field. The total nutrient concentrations were measured in all samples collected (soils and plant parts). A drought occurring in the second rain season of 2016 provided the opportunity to analyse water stress effects on crop quantity and quality (Chapter 2). Edible part samples and yields collected in both seasons were compared. Soil chemical and physical properties, together with farm management variables, were compared to edible part nutrient concentrations and yields using a Canonical Correspondence Analysis (CCA) (Chapter 3). To understand the strength of association between the measurements routinely done by agronomists (leaf measurement) and nutritionists (edible part measurement), samples of each crop were collected, and were compared to each other and to yields, using a bivariate linear mixed model (Chapter 4). During the severe drought, nutrient concentrations in Kapchorwa decreased significantly from normal to drought season in both crops. In contrast, during the moderate drought in Teso South, nutrient concentrations increased significantly in both crops. Lacking nutrient phloem mobility is suggested to play a vital role in mobilisation of micronutrients (Fe, Mn, and Cu), as shown by their decreased concentration under severe drought in the yields of both crops in Kapchorwa (Chapter 2). Soil type had a very strong effect on food nutrient concentrations. Maize grain nutrient concentrations and yields, for example, were significantly higher for all nutrients measured on higher fertility soils. Maize grain had the highest correlations with soil factors. In contrast, corresponding correlations to management factors were much weaker (Chapter 3). Concerning the comparison of nutrient concentrations in different plant parts, low phloem mobile nutrients Ca, Mn, Fe, Zn, and Cu showed the largest differences in correlations between leaves and edible parts. In the same comparison, perennial crops (matooke and cassava) showed lower correlations between leaves and edible parts, than annual crops (maize) (Chapter 4). Environmental factors, such as drought impacted food nutrient concentrations. Severe drought caused a potential “double-burden” for consumers, decreasing both yields and nutrient concentrations, particularly of micronutrients. Considering food nutrient concentrations, apart from yield, as response variables in agronomic trials (e.g. fertilisation or soil improvement strategies) would contribute towards discounting the notion that crops growing on fertile soils always produce healthy and high-quality foods. Leaves may provide information on plant health, however, do not provide enough information to gauge both yields and food quality, particularly regarding micronutrients. The results also showed that measuring the edible part is vital to assessing food quality, particularly due to the observed effects of nutrient mobility, affecting particularly micronutrients and Ca. Ending hunger and improving food and nutrition security for all, particularly when confronted with global change issues such as degrading soils and a changing climate, requires a collaborative effort by all disciplines concerned.Publication Glyphosate use in agro-ecosystems : identification of key factors for a better risk assessment(2010) Tesfamariam, Tsehaye; Römheld, VolkerGlyphosate ([N-phosphonomethyl] glycine) is a non-selective, post-emergence, organo-phosphorous, broad-spectrum herbicide used worldwide for controlling weeds in horticulture, agriculture, silviculture, and urban landscapes. It effectively controls most annual and perennial weed species and is the world´s biggest-selling herbicide. One reason for the popularity of glyphosate is its effect on roots and rhizome systems of weed following foliar application. After coming in contact with soil, glyphosate will be strongly adsorbed and this sorption behavior makes glyphosate unique as compared to most other herbicides and has elicited a general belief that it is rapidly adsorbed to the soil without any residual effect. However, glyphosate adsorption to the soil matrix seems a reversible process and glyphosate conserved in roots of treated target plants has been overlooked in most previous risk assessments. Therefore, in face of the increasing number of yet unexplained observations of negative side effects after glyphosate application, this thesis was initiated to identify possible risk factors associated with the frequent use of glyphosate in agro-ecosystems. For this purpose: (1) relevance of waiting time between weed desiccation by glyphosate and subsequent crop planting, (2) remobilization risk of glyphosate fixed in the soil matrix mediated by pH change in the rhizosphere, (3) glyphosate preservation in target plant roots and (4) contribution of glyphosate released from decaying weed residues for intoxication of following non-target plants were investigated in controlled greenhouse conditions using two contrasting soils: a weakly buffered acidic Arenosol (top soil) and a highly buffered calcareous Luvisol (subsoil). Furthermore, field experiment was conducted to partially confirm the found results of controlled model experiments under greenhouse conditions. These model experiments as well as the experiment in farmer´s field revealed that the residual toxicity of glyphosate increased with a declining waiting time between glyphosate weed desiccation and subsequent crop planting. In the greenhouse experiments, seedling growth and biomass production of sunflower plants were strongly impaired by pre-sowing application of glyphosate in the variants with less than 21 days waiting time. The inhibitory effects on seedling growth were associated with a corresponding increase of shikimate accumulation in the root tissue as physiological indicator for glyphosate toxicity and impairment of the manganes-nutritional status of the sunflower seedlings. Results of the field experiment at Hirrlingen/Tübingen confirmed the relevance of waiting time. Stunted development and heterogeneous emergence of winter wheat plants occurred at field plots where the wheat sowing was done 2 days, compared to plants sown 14 days after foliar application of glyphosate to weed plants. At a short waiting time (2 d), data on visual scoring showed up to 50% of the culture damage that was visually persistent still after 6 months at harvests. This was also associated with a reduced nutritional status of wheat plants Ca, Mg, Zn and Cu, particularly expressed when glyphosate application rate was elevated from 2L to 6 L ha-1. Since glyphosate shows a similar pattern of reaction like that of phosphate in soil, it has been hypothesized that rhizosphere processes responsible for P mobilization are likely to co-mobilize also glyphosate. To test this hypothesis, an experiment was conducted using the two soils with contrasting properties pre-incubated with different rates of glyphosate and supplied with stabilized NH4+-N or NO3--N to induce the different changes in rhizosphere pH. From the results of this experiment, however, it was not possible to confirm this hypothesis. No glyphosate phytotoxicity of sunflower seedlings on the Luvisol with NH4+ could be detected due to observed minor rhizosphere acidification. In agreement, also no shikimate accumulation in root was measured. However, there was a distinct decrease in biomass of the sunflower seedlings at NH4- supply, possibly due to a missing NO3- signal. In contrast in the Arenosol no difference in growth could be shown between both supplied N-forms despite a clearly expressed difference in rhizosphere pH. Root exudation of organic carboxylates has also been considered to assists the release of adsorbed phosphate in the rhizosphere from the soil matrix via exchange chelation. A similar phenomenon was expected for glyphosate. In the present study, however, supplementation of Na-citrate or citric acid to both contrasting soils, pre-incubated with different levels of glyphosate, did not show a clear evidence for an adequate glyphosate remobilization and the subsequent plant damage. On the acidic Arenosol, there was no difference in growth of sunflower seedlings between the treatments. In contrast, on the Luvisol, supplementation of Na citrate (10µmol g-1 soil) but not citric acid indicated some promotion of root growth on glyphosate free treatment. This could not be easily explained because no intracellular shikimate accumulation as bio-indicator for glyphosate could be detected in the treatments with glyphosate pre-incubated soil. In many plant species, glyphosate is not readily metabolized, but preferentially translocated to young growing tissues of roots and shoots, where it can be accumulated in millimolar concentrations. In soil-grown target plants, this inhomogeneous distribution of glyphosate within the root tissues may lead to the formation of hot spots of glyphosate containing root residues in soils. Subsequently this stored glyphosate as hot spots can be released during microbial degradation of root material. To evaluate the potential of roots of target plant in stabilization and subsequent release of glyphosate with intoxication of subsequent crop plants, model experiments were conducted with application of glyphosate either via rye grass as target weed plants or directly to the soil. Sunflower seeds were sown at different waiting times (0-21 days) for both glyphosate application modes. Toxicity of glyphosate applied shortly before sowing of sunflower as non-target was strongly dependent on the mode of glyphosate application. When glyphosate was sprayed on pre-cultured rye grass seedlings as model weed, detrimental effects on plant growth and the Mn nutritional status, as well as increased intracellular shikimate accumulation in root tissue were more strongly expressed than at a direct soil application of the same amount of glyphosate. The increased extent of toxicity after a glyphosate pre-sowing application to pre-cultured rye grass compared with a direct soil application might indicate that the root tissue of glyphosate-treated weeds represents a storage pool for glyphosate in the pots. The globally increasing adoption of no-till or reduced tillage systems are becoming a driving force for an increase of glyphosate use. In such systems, glyphosate is applied pre-sowing for weed control and glyphosate may remain in root and shoot residues. Usually in these reduced tillage systems, only a minimal soil disturbance occurs at sowing, which might lead to limited incorporation of the glyphosate contaminated straw to the upper soil layer where germination of following non-target crop will take place. To evaluate such risk, a pot experiment was conducted under controlled greenhouse conditions with the two contrasting soils. Glyphosate was supplied via glyphosate pre-treated shoot or root material of rye grass applied either as chopped plant material ?straw? or as homogenate. Analysis of physiological parameters such as intracellular shikimate accumulation as metabolic indicator for glyphosate toxicity, biomass production and micronutrient status revealed, that a detrimental effect could be only with treated rye grass shoot material as straw or homogenates incorporated into the Arenosol but not into the Luvisol. This is most probably related to the difference in soil property between the two soils. At this level of glyphosate supply, the detoxification capacity of the highly buffered calcareous subsoil might have played a primary role in preventing glyphosate toxicity, while this glyphosate supply level seems beyond the detoxification capacity of the weakly buffered acidic Arenosol. All together, the achieved results of the model pot experiments are in correspondence with that of the reported field experiments. Further, the results revealed the important role of glyphosate stored in root and shoots of weed plants as a glyphosate pool in soils for intoxication of following crops. More information on transformation of these glyphosate enriched crop residues and its glyphosate release during microbial decomposition in different soils are urgently needed for a better precaution and risk assessment of glyphosate use for weed control for farmer´s practice.Publication Rhizosphere processes as determinants for glyphosate damage of non-target plants(2010) Bott, Sebastian; Neumann, GünterDue to low production costs and high herbicidal efficiency, glyphosate is the most widely used wide-spectrum herbicide. Glyphosate acts as a non-selective, total herbicide by inhibiting the biosynthesis of aromatic amino acids. Apart from glyphosate drift contamination, risks of glyphosate toxicity to crop plants and other non-target organisms are generally considered as marginal, because glyphosate is almost instantaneously inactivated by adsorption to the soil matrix and rapid microbial/chemical degradation in the soil solution. However, in the recent past, an increasing number of yet unexplained observations on significant damage of crop plants have been reported in the literature and by farmers, suggesting gaps in the risk assessment, with respect to the fate glyphosate in the rhizosphere and the interaction with rhizosphere processes. According to these observations, the aim of present study was a systematic evaluation of potential rhizosphere effects of glyphosate, including direct toxicity, risks of re-mobilisation by fertiliser application, potential role of pathogens and allelopathic compounds, and interactions with micronutrients, both in glyphosate-sensitive and transgenic glyphosate-resistant crops. A series of field trials in reduced soil tillage cropping systems as well as green-house experiments on soils with contrasting properties with sunflower, winter wheat and soybean, consistently revealed a close clausal relationship between crop damage and (a) short waiting times between glyphosate application on target weeds and subsequent sowing of crops and (b) the density and speed of decay of glyphosate-treated weeds. The results suggested that damage of crop plants is induced by a rhizosphere transfer of glyphosate from weeds to subsequently sown crops. This transfer might take place by contact contamination due to exudation of glyphosate from living roots of treated weeds and/or release during decomposition of the root residues. A comparison between phytotoxic effects of glyphosate and aminomethylphosphonic acid (AMPA) as major metabolite of glyphosate in soils, revealed high toxicity in case of root exposure to glyphosate, but not to AMPA. By contrast, a significant decline of germination was induced by seed exposure to AMPA, while germination was not affected by glyphosate treatments. The observed differences in sensitivity to glyphosate and AMPA in different stages of plant development may explain variable symptoms of crop damage under field conditions, ranging from growth depressions and chlorosis to reduced field emergence. The results of the present study further suggest that risks for crop damage associated with rhizosphere transfer of glyphosate are additionally influenced by a range of environmental factors, such as growth season (spring or fall application), temperature, soil moisture, redox potential of soils and soil microbial activity. These factors might shorten or prolongate the time window for crop damage of glyphosate contact contamination in the rhizosphere under field conditions. Model experiments investigating the sensitivity of different plant species to glyphosate root exposure, revealed significant differences between winter wheat, maize and soybean in terms of glyphosate-induced plant damage but also in their ability for recovery from glyphosate damage suggesting marked genotypic differences in the expression of damage symptoms also under field conditions. In agreement with previous investigations, results of the present study indicated a rapid inactivation of glyphosate by adsorption to the soil matrix. Glyphosate adsorption in soils seem to be mainly mediated by the phosphonate group of the molecule in a way similar to the adsorption of inorganic phosphate. Accordingly glyphosate re-mobilisation is possible via ligand exchange by phosphate application. The results of the present study have demonstrated for the first time that depending on soil properties also the application of fertiliser phosphate is able to re-mobilise glyphosate in sufficient quantities to mediate crop damage in pot experiments. This finding suggest, that re-mobilisation of glyphosate potentially by fertiliser P or root-induced chemical modifications for P and Fe mobilisation needs to be considered as additional potential rhizosphere pathway for glyphosate damage to non-target plants. Field trials and model experiments under soil and hydroponic conditions consistently revealed a significantly impaired nutritional status of glyphosate-sensitive but also glyphosate-resistant crops. However, depending on the culture conditions different mineral nutrients were affected by the glyphosate treatments and plant damage was not related with a certain nutrient deficiency. These findings suggest that damaged root growth, induced by glyphosate toxicity, rather than specific interactions with certain mineral nutrients are responsible for the observed impairment of nutrient acquisition. In conclusion, results of the present study highlight that risks for crop damage associated with glyphosate toxicity in the rhizosphere can be substantial and is influenced by factors such as waiting time after herbicide application, weed density, cropping systems, fertilizer management, genotypic differences, and probably also environmental factors including temperature, soil moisture, and soil microbial activity. The independency between these factors is so far not entirely clear but should be investigated in future studies. Nevertheless, results of present study suggest that risks could be minimized by simple management tools such as the consideration of waiting times between application of glyphosate and sowing of crops particularly in case of high weed densities and alternation of herbicides to reduce not only risk for remobilization of glyphosate but also problems associated to the selection of glyphosate-resistant weeds.