Browsing by Subject "Minimale Bodenbearbeitung"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Betriebswirtschaftliche Analyse des Einsatzes moderner Agrartechnik in der Körnerfrüchteproduktion in Russland.(2007) Vorontsova, Tatiana; Zeddies, JürgenThe dissertation in hand refers to the optimisation of conventional cultivation methods by the use of resource-saving technologies in cereal production at six agricultural survey enterprises in the Region of Samara/Russia. The aim of the optimisation is to estimate the economic efficiency of the changeover from conventional to resource-saving cultivation methods as well as to evaluate the use of agricultural machinery adapted to the specific technology, and, starting from this basis, to develop practice-oriented and efficiency-increasing solutions. Agriculture is still one of the most important branches of the economy in the Region of Samara on the middle Volga. The climatic conditions are not optimal for a successful grain production, while this branch plays an important role in the region. Despite of the positive development, in grain production in the Region of Samara the production potential has not yet been completely used. During the last years a considerable reduction in the agricultural machinery stock could be noticed, mainly because of obsolescence and wastage of the agricultural machinery as well as the small number of new purchases. The equipment at the disposal of the agricultural enterprises for plant cultivation, during the years 1990 to 2002 ? if compared to the requirements in agricultural technics ? amounted to approximately 46 percent of the tractors needed and approximately 56 percent of the combine harvesters needed. This entailed that the optimal time periods were not matched which, as a consequence, led to the reduction in the yields and an extension of the area not harvested. In order to create favorable conditions for an efficient grain production and for the development of the grain market in the Region of Samara, in 1998 the programme for the "Improvement of the grain production by the application of resource and accordingly watersaving cultivation methods 1998-2002" was starting to be implemented. The changeover from conventional cultivation methods to the use of resource-saving methods including modern and efficient agricultural technics represents a big challenge especially for medium-sized and small farms with a restricted financial potential. Through excluding ploughing from the soil cultivation work process as a most cost-intensive operation, as a result of the optimisation, machine costs can be reduced considerably under the system of preserving soil tillage. On average, these machine costs amount to 18.3 ?/ha with no-till cultivation, and are thus approximately 6 percent lower than with the conventional cultivation methods that were practised in the survey enterprises before. The average machine costs for direct drilling methods amount to approximately 15 ?/ha and can consequently be further reduced by about 18 percent if compared to no-till cultivation methods, and by approximately 22 percent if compared to conventional production methods. However, in the case of applying modern agricultural technics for resource-saving cultivation methods, the resulting fixed costs considerably surmount those of conventional cultivation methods. The modern agricultural machinery shows, however, a substantially higher performance potential. In the long-term, it can be assumed that the modern agricultural machines in this context are the more efficient solution. Moreover, the economic efficiency analysis of the cultivation methods? rearrangement rendered considerable advantages as to the development of labour demand and costs at the questioned agricultural enterprises. The application of resource-saving cultivation methods contributes to a noticeable decrease in labour demand. Under application of optimised cultivation methods, the labour cost is approximately 1.3 ?/ha or 60 percent lower than the total labour costs in the case of conventional cultivation methods. Although the implementation of resource-saving cultivation methods basically does not require an intensified application of fertilisers and pesticides, their aplication volume is being raised and adapted to the necessary level within the frame of the optimisation process. Under favourable weather conditions thus an increase of the yield per hectare as well as of the quality, and in the medium-term, a positive influence on the cereal production can be expected. As result of the conducted optimisation of cultivation methods and of the implementation of the recommended measures at the survey agricultural enterprises in the Region of Samara, a change in the obtained gross margin can be detained. The average gross margin decreases under no-till cultivation by approximately 24 percent and amounts to 58 ?/ha. The calculated gross margin for the direct drilling methods amounts to 61 ?/ha and is still below the amount effected under conventional cultivation methods. The calculated equilibrium points at the fact that the implementation of the optimised cultivation methods requires an increase of the hectare yield in the survey farms by 2.5 dt/ha on average. In order to reach a positive economic effect or at least the same economic efficiency as with use of conventional cultivation methods, the hectare yield should be increased to approximately 23 dt/ha or, by 12 percent. In spite of the findings resulting from the optimisation calculations that the gross margins are reduced with direct drilling as well as with no-till cultivation methods, the results in Samara Region, however, indicate a continuous increase of the economic efficiency under the condition of a long-term application of resource-saving cultivation methods in cereal production. The rearrangement of the conventional cultivation methods towards the optimised resource-saving technologies is under these conditions for the survey agricultural enterprises advantageous in a long-term view.Publication Crop yield and fate of nitrogen fertilizer in maize-based soil conservation systems in Western Thailand(2021) Wongleecharoen, Chalermchart; Cadisch, GeorgThe increase in food demand and land scarcity in high-potential lowland areas have forced cropping intensification with a transformation of land use from subsistence to permanent agriculture in remote hillside in Southeast Asia. This change and inappropriate land use are the prime cause of soil degradation by erosion, which have negatively affected the agricultural systems productivity and sustainability in Thailand. Therefore, vulnerable land in sloping terrain is classified as unsuitable for continuous production of arable crops unless conservation measures are introduced to stabilize the landscape. Even though conservation practices can stabilize sloping land, farmers have not been widely adopted the measures due to various constraints, such as crop area loss and crop-tree competition. To improve land use management, a two-year study (2010-2011) was conducted at the Queen Sirikit research station (13°28’N, 99°16’E), Ratchaburi Province, Thailand, on a hillside with a slope of around 20%. The treatments consisted of (T1) maize (Zea mays L.) mono-crop under tillage and fertilization, (T2) maize intercropped with chili (Capsicum annuum L.) under tillage and fertilization, (T3) maize intercropped with chili, application of minimum tillage plus Jack bean (Canavalia ensiformis (L.) DC) relay cropping and fertilizer application, (T4) maize intercropped with chili, application of minimum tillage with Jack bean relay cropping and fertilizer application plus perennial hedges of Leucaena leucocephala (Lam.) de Wit, (T5) as T3 but without fertilization, and (T6) as T4 but without fertilization. There was an additional plot of chili sole cropping to calculate the land equivalent ratio (LER). The first part of the study evaluated yield performance and nitrogen use efficiency (NUE) of crops using the 15N isotope technique under diverse fertilized cropping systems during the first year. Maize grain yields were lower in T2 (3.1 Mg ha-1), T3 (2.6 Mg ha-1) and T4 (3.3 Mg ha-1) than in the control (T1) (6.7 Mg ha-1). The total returns from maize and chili yields were 1,914, 5,129, 3,829, 3,900, 3,494, and 2,976 USD ha-1, for T1, T2, T3, T4, T5 and T6, respectively. Higher economic returns in mixed crop systems, by selling both maize and chilies, compensated for the maize area loss by intercropping. Maize 15NUE was highest in T2 (53.5%), being significantly higher than in T1 (47.0%), T3 (45.5%), and T4 (45.7%). Overall system’s NUE in T2 (56.8%) was comparable to T1 (53.8%) and T4 (54.5%) but significantly lower in T3 (48.6%). Minimum tillage and hedgerows (despite their positive filter effect) did not increase NUE but adversely affected maize growth during the establishment phase. The second part of the study examined nitrogen fertilizers fate and quantified partial nitrogen budgets at plot level over two cropping seasons for various maize-based cropping systems with or without fertilizer application. Overall plant uptake of fertilizer 15N applied to maize was 48.6-56.8% over the first season, while residual fertilizer 15N recovery of plants was only 2.3-4.9% over the subsequent season. The quantity of applied labelled N remaining in the soil at the end of season 1 and season 2 was 6.2-28.1% and 7.7-28.6%, respectively. Thus, 60.0-76.0% in season 1 and 12.7-31.3% in season 2 of the applied fertilizer 15N were accounted for within the plant-soil system. Consequently, 24.0-40.0% and 12.9-16.1% of labelled fertilizer N were not accounted for at the end of season 1 and season 2, respectively. The derived N balance over two years revealed severe soil N depletion under T1 (-202 kg N ha-1), T5 (-86 kg N ha-1) and T6 (-48 kg N ha-1), and a slightly negative N budget under T2 (-5 kg N ha-1). In contrast, T3 (87 kg N ha-1) and T4 (62 kg N ha-1) had positive N balances. The increase of N input via additional N fertilizer applied to chili and symbiotic N2 fixation of legumes, and the reduction of N losses by soil erosion and unaccounted fertilizer N (probably lost via leaching, volatilization and denitrification) were the main factors of the positive N balances under maize-chili intercropping systems with conservation measures and fertilization (T3 and T4). Maize yield decline under T1, T2, T5 and T6 in season 2 was related to negative N balances, while maize yield increase under T3 and T4 was related to positive N balances. However, maize-chili intercropping with fertilization had some advantage (LER > 1.0) relative to sole species cropping. Moreover, total returns from crop yields in season 2 of all maize-chili intercroppings (1,378-1,818 USD ha-1) were higher than chili sole cropping (1,321 USD ha-1), which pointed to its crucial role in decreasing production risk by reducing yield loss by pests and diseases observed in chili plants. The third part of the study used combined data of stable isotope discrimination and electrical resistivity tomography (ERT) to improve understanding of competition at the crop-soil-hedge interface. Hedges significantly reduced maize grain yield and aboveground biomass in rows close to hedgerows. ERT revealed water depletion was stronger in T1 than in T4 and T6, confirming time domain reflectometry (TDR) and leaf area data. In T4, water depletion was higher in maize rows close to the hedge than rows distant to hedges and maize grain δ13C was significantly less negative in rows close to the hedge ( 10.33‰) compared to distant ones ( 10.64‰). Lack of N increased grain δ13C in T6 ( 9.32‰, p ≤ 0.001). Both methods were negatively correlated with each other (r= 0.66, p ≤ 0.001). Combining ERT with grain δ13C and %N allowed identifying that maize growth close to hedges was limited by N and not by water supply. In conclusion, the results suggested a significant positive interaction between mineral N fertilizer, intercropping systems and soil conservation measures in maintaining or improving crop yields and N balances in Thailand’s hillside agriculture. Simultaneously, combining ERT imaging and 13C isotopic discrimination approaches improved the understanding of spatial-temporal competition patterns at the hedge-soil-crop interface and pointed out that competition in maize-based hedgerow systems was driven by nitrogen rather than water limitation. Therefore, sustainable agriculture might be achieved if farmers in Thailand combine soil conservation measures with appropriate and targeted N fertilizer use.