Browsing by Subject "Mycotoxin"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Publication Electronic nose for the rapid detection of deoxynivalenol in wheat using classification and regression trees(2022) Camardo Leggieri, Marco; Mazzoni, Marco; Bertuzzi, Terenzio; Moschini, Maurizio; Prandini, Aldo; Battilani, PaolaMycotoxin represents a significant concern for the safety of food and feed products, and wheat represents one of the most susceptible crops. To manage this issue, fast, reliable, and low-cost test methods are needed for regulated mycotoxins. This study aimed to assess the potential use of the electronic nose for the early identification of wheat samples contaminated with deoxynivalenol (DON) above a fixed threshold. A total of 214 wheat samples were collected from commercial fields in northern Italy during the periods 2014–2015 and 2017–2018 and analyzed for DON contamination with a conventional method (GC-MS) and using a portable e-nose “AIR PEN 3” (Airsense Analytics GmbH, Schwerin, Germany), equipped with 10 metal oxide sensors for different categories of volatile substances. The Machine Learning approach “Classification and regression trees” (CART) was used to categorize samples according to four DON contamination thresholds (1750, 1250, 750, and 500 μg/kg). Overall, this process yielded an accuracy of >83% (correct prediction of DON levels in wheat samples). These findings suggest that the e-nose combined with CART can be an effective quick method to distinguish between compliant and DON-contaminated wheat lots. Further validation including more samples above the legal limits is desirable before concluding the validity of the method.Publication Molecular and genetic analyses of aggressiveness in Fusarium graminearum populations and variation for Fusarium head blight resistance in durum wheat(2011) Talas, Firas; Miedaner, ThomasFusarium head blight (FHB) is a devastating disease of wheat, barley and other cereals, which affects all wheat-growing areas of the world. The most prevalent species are Fusarium graminearum Schwabe (teleomorph: Gibberella zeae (Schweinitz) Petch) and Fusarium culmorum (W. G. Smith) Saccardo. Wheat breeding for FHB resistance has become the most effective and cost efficient strategy to combat this disease. Assisting long term stable breeding programs need a better understanding of the biology and dynamic changes of the population structure. Deoxyninalenol (DON) has the most economical impact among the other mycotoxin secreted by this fungus. Several chemotypes characterizes F. graminearum isolates. All chemotypes (3-ADON, 15-ADON, and NIV) were detected in Europe. The prevalent chemotype in Germany and UK is 15-ADON. Population structure is the result of evolutionary forces acting on the population in time and space together with mutation, recombination, and migration enhancing the genetic variance of a population, random drift and the selection reducing it. Aggressiveness in F. graminearum denotes the quantity of disease induced by a pathogenic isolate on a susceptible host in a non-race specific pathosystem, and is measured quantitatively. The quantitative traits such as aggressiveness and DON production mirror both the environmental changes and the genetic variation. Several genes are responsible for DON production; majority of these genes are grouped in TRI5 cluster. Few genes are known to be associated with F. graminearum aggressiveness such as MAP kinase genes, RAS2, and TRI14. Association between single nucleotide polymorphism and genetic variation of aggressiveness and DON production traits provide a clear identification of quantitative participation of different SNPs in expressing the trait. Also, this approach provides a good method to test the association between candidate genes and the traits. The objectives of this research were to (1) screen some durum wheat landraces for FHB resistance; (2) determine the genetic and chemotypic structure of natural population of F. graminearum in Germany; (3) determine the phenotypic variation in Aggressiveness and DON production, which come out one farmer wheat field; (4) compare the phenotypic variation and genetic variation occurring in one wheat field; and (5) associate the phenotypic traits with SNPs in candidate genes. Screening for FHB resistance was performed on sixty-eight entries form the Syrian landraces. The main characters of selection for resisting FHB disease are low mean value of infection and stability in different environments. Four genotypes (ICDW95842, ICDW92330, ICDW96165, Chahba) had small mean FHB value, small value of deviation form regression, and regression coefficient close to zero. These genotypes were considered as candidate resistant sources of FHB for further agronomic performance analysis through backcrossing generation. The causal agent of FHB in Germany is F. graminearum s.s. with a dominating rate of 64.9 % (out of 521 Fusarium spp. isolates). Nonetheless, the three chemotypes were detected in Germany and some times within one wheat field. The 15-ADON chemotype dominated the populations of F. graminearum s.s. in Germany followed by 3-ADON then NIV chemotype (92, 6.8, and 1.2%, respectively). High genetic diversity (Nei?s gene diversity ranged form 0.30 to 0.58) was detected on a single wheat field scale. Analysis of molecular variance (AMOVA) revealed a higher variance within populations (71.2%) than among populations (28.8%). Populations of F. graminearum s.s. in Germany display a tremendous genetic variation on a local scale with a restricted diversity among populations. Surprisingly the phenotypic variation of aggressiveness and DON production revealed a similar partitioning scale as the genetic variation. In other words, analyses of variance (ANOVA) revealed a higher variance within populations (72%) than between (28%) populations. The wide spectrum of aggressiveness (i.e., from 18 to 39%) and DON production (from 0.3 to 23 mg kg-1) within single wheat field simulate the global variation in both traits. Consequently, associating the observed variation of aggressiveness and DON production with detected single nucleotide polymorphism (SNPs) in some candidate genes revealed few but significant associations. According to Bonferroni-Holm adjustment, three SNPs were associated significantly with the aggressiveness, two in MetAP1 and one in Erf2 with explained proportions of genotypic variance (pG) of 25.6%, 0.5%, and 13.1%, respectively. One SNP in TRI1 was significantly associated with DON content on TRI1 (pG=4.4). The rapid decay of the LD facilitate a better high resolution of the association approach and is in turn suggest the need of higher number of SNP marker to facilitate a genome wide association study. The linkage disequilibrium between unlinked genes suggests the involvement of these genes in the same biosynthesis network. In conclusion, building wheat breeding program for FHB resistance depend initially on identifying sources of resistance among wheat varieties or wild relatives. Moreover, understanding the population structure of the pathogen and the selection forces causing genetic alteration of the population structure enable us employ a sufficient increase of the host resistance. Keeping such a balanced equilibrium between increasing host resistance and changes occur in genetic structure of F. graminearum population would insure no application of additional selection pressure. Further association of candidate genes with aggressiveness can provide effective information of the population development. Continuous observation of Fusarium population?s development is needed to insure a stable management of Fusarium head blight disease.Publication Resistance of Maize (Zea mays L.) Against the European Corn Borer (Ostrinia nubilalis Hb.) and its Association with Mycotoxins Produced by Fusarium spp.(2004) Magg, Thomas; Melchinger, Albrecht E.The European corn borer (ECB, Ostrinia nubilalis Hübner) is a major pest of maize (Zea mays L.) in Europe and continues to spread to northern maize growing regions. The ECB severely affects commercial maize production by decreasing yield stability. In addition, damaged plants often show an increased susceptibility to secondary infections caused by Fusarium spp.. Information about the potential of Bt hybrids (event 176, MON810) to reduce yield losses and mycotoxin contamination under Central European growing conditions is still lacking. However, such monogenic resistances with a strong negative effect on the ECB will break down rapidly. Improving the natural host plant resistance of maize could provide an economical and ecological tool for an integrated pest management system. The overall goal of this study was to evaluate alternative breeding strategies for improving resistance of maize against ECB damage and Fusarium spp.. The objectives were to (1) initiate a selection experiment in the early maturing European flint pool and evaluate a breeding program for ECB resistance in the European dent pool, (2) compare the efficiency of host plant resistance vs. Bt resistance in maize, (3) determine Fusarium-caused mycotoxin contamination of maize genotypes with improved host plant resistance to ECB, and (4) study the association between important agronomic traits, ECB resistance traits, and mycotoxin concentration in early European maize germplasm. The goal of the Hohenheim ECB breeding program, initiated in 1992, was to select lines with improved per se and testcross performance for multiple agronomic traits and ECB resistance. In the standard breeding scheme, line development started from a segregating S1 population. Genotypes were evaluated for their line per se ECB resistance in generations S1, S3, and S5. Lines from the S2, S4, and S5 generations were testcrossed and evaluated for their agronomic performance. Selection was based on ECB resistance and TC performance for grain yield and maturity. In order to compare transgenic Bt maize hybrids carrying event 176 or MON810 with their isogenic counterparts and commercial hybrids or experimental hybrids, field trials in multiple environments were conducted in 1998 to 2000. Furthermore, a laboratory bioassay with neonate ECB larvae was performed to assess mortality and subsequently the level of Bt antibiosis present in the used hybrids of 1998. Resistance traits such as damage rating of stalks, number of damaged plants, and number of larvae per plant were assessed exclusively in manually ECB infested plots. Grain yield, grain dry matter content and plant height were determined in the insecticide protected and the ECB infested main plots. In addition, grain samples from each subplot were drawn at random and analyzed separately for Fusarium mycotoxins such as type B trichothecenes (DON, NIV), Zearalenon (ZEN), Fumonisins (FUM), and Moniliformin (MON). The inbred lines displayed a significant genotypic variance for all ECB resistance traits evaluated. However, in the further course of selection and topcross testing, most dent and flint lines, especially those displaying improved resistance to ECB larvae feeding, were discarded because of their poor agronomic performance. Negative correlations between grain yield, early maturity and the damage rating of stalks were identified. However, three dent lines (P028, P029, P030) with moderate resistance to ECB were developed. In all experiments, Bt hybrids were superior to other hybrids in the control of ECB larvae. Non-Bt hybrids displayed a significant genotypic variance for all evaluated resistance traits; grain yield reductions ranged from 8.6 to 21.8% under manual infestation of ECB. All evaluated resistance traits were highly significantly correlated with each other and showed significant negative correlations to grain yield reduction. Bt hybrids did not differ from their isogenic counterparts for most agronomic traits. Highly significant location and genotype × location interactions were identified for all mycotoxins evaluated, except MON. MON concentration doubled under manual infestation of ECB compared to insecticide protected conditions and a similar trend was found for FUM. Bt hybrids displayed significantly lower MON concentrations than non-Bt hybrids and significantly lower DON concentrations than their isogenic counterparts under ECB infestation. Highly significant correlations between ECB resistance traits and MON were found. However, a significant genotypic variance was observed for DON, 15-A-DON, FUM, and MON concentrations, suggesting variation for resistance against Fusarium spp. in current elite hybrids. By combining different sources of monogenic Bt resistance and quantitatively inherited resistances to ECB, it may be possible to develop hybrids with multiple resistance by pyramiding the underlying genes in one genotype. Therefore, further research is required to identify new sources of ECB resistance and new breeding strategies should be developed. Furthermore, there is indication that an improved resistance against Fusarium spp. possesses a greater potential for reducing mycotoxin contamination of maize kernels than a high level of ECB resistance. Since resistance to ECB and resistance to Fusarium spp. are inherited fairly independently, simultaneous improvement of both resistances seems to be necessary for improving the stability and quality of future maize hybrids.