Browsing by Subject "Nitrogen use efficiency"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Publication Evaluation and improvement of N fertilization strategies in the wheat/maize double-cropping system of the North China Plain(2015) Hartmann, Tobias Edward; Müller, TorstenThe North China Plain (NCP) is the main production area of cereal crops in China. The intensification of agricultural systems and the increased use of chemical N fertilizers are contributing to environmental pollution. One of the objectives of this thesis was to apply an Nmin based approach for the calculation of N application rates to a previously over-fertilized farmers field of the NCP and to evaluate the potential of reducing N inputs while maintaining the grain yield of a summer-maize/winter-wheat double-cropping system; and to evaluate fertilizer strategies, aiming to reduce N inputs and loss. Using an Nmin based approach for the calculation of fertilizer application rates, a reduction of fertilizer input by up to 50% compared to farmers practice (550 kg N ha-1 a-1) is possible without negatively affecting the grain yield of a wheat / maize double cropping system. The extreme re-supply of N during the summer-vegetation periods of maize in the first two experimental seasons resulted in high yields of the control treatment (CK: 2009: 5.7 and 2010: 5.9 Mg ha-1), which did not significantly differ from the fertilized treatments. This resulted in a reduced recovery efficiency of N (REN: 0.09 kg kg-1 – 0.30 kg kg-1). According to the results of this field experiment there was no agronomic justification for the application of fertilizer N. The grain yield of maize of the control treatment finally decreased in the third vegetation period of summer-maize. While maintaining the yield level, the optimized application of N increased REN (0.37 – 0.58 kg kg-1) significantly compared to farmers practice (0.21 kg kg-1) in this final vegetation period of maize. Wheat, in contrast to maize, is dependent on the application of fertilizer N for yield formation. In both vegetation periods of wheat, REN of the reduced treatments (0.34 – 1.0 kg kg-1) was significantly higher compared to FP (0.26 and 0.27 kg kg-1). The highest cumulated (5 vegetation periods) agronomic efficiency of N, as well as cumulated grain yield of the wheat/maize double-cropping system was observed when ammoniumsulphate-nitrate was applied in combination with the nitrification inhibitor 3,4-dimethylpyrazolephosphate (ASNDMPP: AEN: 19 kg kg-1, yield: 35 Mg ha-1) and according to crop N demand and residual soil mineral N. The highest REN was observed when urea ammonium nitrate was applied in a shallow, banded depot (UANDEP: 40 kg kg-1). The results of this field experiment further show that the N surplus (fertilized N - grain N) as well as the N balance (N Input - N output) after harvest are significantly lower when an optimized approach to fertilizer application is followed. The over-application of N for an optimized application of urea or ASNDMPP (Surplus: -25kg to 98 kg N ha-1; Balance: -36 to 102 kg N ha-1) was significantly reduced compared to current farmers practice (Surplus: 156kg to 187 kg N ha-1; Balance: 56 to 262 kg N ha-1). This leads to lower residual N in the soil horizon from 0 - 90 cm in the reduced treatments (113 kg N ha-1 at end of experiment) compared to FP (293 kg N ha-1). The results of this experiment indicate that N contained in the residues of maize is available only to the subsequent summer-crop and may sufficiently supply N for the yield formation of maize. Should the over-application of N be effectively reduced in the cropping systems of the NCP it is therefore necessary to take the N mineralization potential of soils into account. Based on the results of this field experiment and others, a crop-soil interface model (HERMES) was calibrated and validated to the conditions of the NCP. Finally, this research observed the effect of wheat straw and the urease inhibitor (UI) N-(n-buthyl) thiophosphoric triamide (nBPT) on the turnover of urea, as well as the loss of ammonia and nitrous oxide from an alkaline soil of the NCP. UI inhibit or reduce the appearance of ammonia after the application of urea and almost completely prevent the loss of N as ammonia (urea: 12 – 14% loss). nBPT effectively reduces the rate of urea hydrolysis but does not down-regulate the process enough to completely inhibit nitrification, thereby maintaining the availability of N from urea for plants. Further, the addition of wheat straw prolongs the appearance of ammonium after the application of urea while the appearance of nitrate is reduced. Wheat straw may therefore either act as a stimulant of hydrolysis or as an inhibitor of nitrification. The addition of urea increases soil respiration and the emission of N2O drastically, possibly acting as a C and N source for microbial organisms and causing a priming effect on microbial activity in soils. This effect was increased further when wheat straw as well as urea were added to soil. nBPT, in contrast, prevents a significant increase in CO2-respiration and N2O-emission. The urease inhibitor may therefore generally restrict microbial activity or shift nitrification/denitrification processes towards the emission of N2.Publication Nitrogen dynamics in organic and conventional farming systems in the sub-humid highlands of central Kenya(2019) Musyoka, Martha; Cadisch, GeorgNitrogen (N) deficit is one of the limiting factors to food security in most developing countries while the excessive use of N has resulted in environmental contamination. Timely N availability, at the right rate is crucial to improving crop yield and N use efficiency in farming systems. Therefore, understanding nitrogen dynamics under different farming systems is essential to improve N use and recovery efficiencies of crops and in addressing environmental impacts associated with increased use of inorganic and organic inputs. This study focused on N dynamics in conventional (Conv) and organic (Org) farming systems as practiced by small scale farmers (at ∼50 kg N ha−1yr−1, Low input) and at recommended levels of input (∼225 kg N ha−1yr−1, High input) for commercial use in the sub humid and humid regions of Central Kenya. Data was collected during three cropping seasons between October 2012 and March 2014 in an on-going long-term trial established since 2007 at Chuka and at Thika sites located in central highlands of Kenya. Mineral N-based fertilizer and cattle manure were applied in Conv-High and Conv-Low while composts and other organic inputs were applied at similar N rates for Org-High and Org-Low. Farming systems were laid down in a randomized complete block design with 4 and 5 replications at Chuka and Thika respectively. The trial follows a 2 season-three-year crop rotation envisaging maize, legumes, vegetables and potatoes. N mineralization was studied using a modified buried bag approach while N loss was measured using Self-Integrating Accumulator (SIA) cores. N synchrony was assessed using daily N flux differences constructed as daily N release minus daily N uptake at different stages of the crops. N uptake was assessed at various stages of the crop through destructive sampling while nitrogen use efficiency (NUE) was assessed at harvest. Surface N balances were constructed using N applied as inputs, N deposition via rainfall, biological N fixation and crop yield and biomass as outputs. Out of the total N applied from inputs, only 61, 43 and 71 % was released during potato, maize and vegetable seasons respectively. Farming systems did not show a major impact in their influence on N synchrony, i.e. matching N supply to meet N demand. Rather the N synchrony varied with crop and N demand stages. Positive N flux differences were observed (higher N release compared to N demand) during the initial 20-30 days of incubation for all the farming systems, and negative N flux differences (higher N demand than release) at reproductive stages of the crops. Nitrogen uptake efficiency (NUpE) of potato was highest in Conv-Low and Org-Low at Thika and lowest in Org-High and Org-Low at Chuka where late blight disease affected potato performance. In contrast, NUpE of maize was similar in all systems at Chuka site, but was significantly higher in Conv-High and Org-High compared to the low input systems at Thika site. The NUpE of cabbage was similar in Conv-High and Org-High while the NUpE of kale and Swiss chard were similar in the low input systems. Potato N utilization efficiencies (NUtE) and agronomic efficiencies of N use (AEN) in Conv-Low and Conv-High were higher than those from Org-Low and Org-High, respectively. The AEN of maize was similar in all the systems at Chuka but was higher in the high input systems compared to the low input systems at the site in Thika. The AEN of vegetables under conventional systems were similar to those from organic systems. Both conventional and organic systems lost substantial amounts of mineral-N into lower soil horizons before crop establishment (0-26 days). Cumulative NO3--N leached below 1 m was similar in all the farming systems but was higher at the more humid Chuka site compared to Thika site during the maize season. Significantly more N was leached during potato season compared to maize and vegetable seasons. When NO3--N leached was expressed over total N applied, 63-68% more NO3--N was leached from the low input systems compared to the high input systems. Org-High showed a positive partial N balance at both sites and in all the cropping systems except during the vegetable season at Chuka. All the other systems exhibited negative partial N balances for the three cropping seasons with exception of Conv-High during potato season and Conv-Low and Org-Low during vegetable season at Thika site. In summary, organic and conventional had similar effects on N release, synchrony and N loss through leaching. Furthermore, more N was leached (when expressed as a fraction of N applied) during potato and vegetables cropping seasons in the low input systems compared to the high input systems. In addition, conventional and organic farming systems had similar effects on NUpE, AEN, NUtE and NHI for maize and vegetables, while conventional systems improved NUE of potato compared to organic systems. The research therefore concludes that organic and conventional farming systems at high input level are viable options of increasing food security in sub-Saharan Africa (SSA) for maize and vegetables as demonstrated by similar yields, NUE, N supply and loss. Ability to meet food security in conventional and organic system at low input is hampered by high N losses, negative N balances coupled with low productivity due to biotic and abiotic stresses. In both conventional and organic systems, there is a need to reduce N application at planting and increase N applied at reproductive stages to minimize potential loss during the initial 20-30 days after application and improve N supply midseason when crop demand is high. Since organic systems depend on organic inputs, there is a critical need to improve the quality of manure, composts and other organic inputs to improve N supply and availability.Publication The effects of rumen nitrogen balance on nutrient digestion, protein metabolism, and performance of dairy cows as influenced by diet composition(2021) Kand, Deepashree Dilip; Dickhöfer, UtaFeeding excess dietary crude protein (CP) beyond the requirements of dairy cattle and microbes in the rumen increases production costs for farmers, excretion of nitrogen (N) to the environment, and has negative effects on the cows’ health and reproductive performance. Researchers have been interested in exploring the effects that diets with negative rumen nitrogen balance (RNB) may have on the dairy cattle and their rumen function. Results so far have been inconsistent may be due to the performance level of the animal with high-yielding dairy cows being more sensitive than low performing ones. Moreover, it may be supposed that variable responses to negative RNB in different studies may at least partly be related to varying ingredient composition and the type of main carbohydrate or N sources in the animals’ diets. The overall objective of the thesis was to generate a comprehensive understanding on the effects of interactions between the RNB levels and carbohydrate and N sources in cattle diets on rumen fermentation, the efficiency of microbial CP synthesis, and on N use efficiency in vitro and in vivo. The results of the present thesis indicate that the effects of negative RNB levels may vary with dietary composition in dairy cows. Therefore, outlining a single minimum RNB balance threshold for dairy cattle diets may not be appropriate when optimizing N utilization in dairy cows, because several animal and dietary factors modify the requirements of rumen microbes.Publication Untersuchungen zur Bedeutung der Stickstoffeffizienz für die Ertragssicherheit bei Mais(2002) Thiemt, Elisabeth-M.; Geiger, Hartwig H.Increased fertilization with nitrogen (N) in maize production areas often leads to pollution. Maize varieties with improved N-use efficiency under low soil N conditions can therefore contribute to sustainable agriculture. The objectives of this study were to investigate, whether i) hybrids with special adaptation to low soil nitrogen condition show higher yield stability than those which were selected in high nitrogen environments , ii) N-efficient hybrids are more tolerant to drought conditions, iii) combination of parent lines with differences in N-efficiency leads to increased heterosis , and iiii) hybrids show differences concerning components of N-efficiency, in particular N-uptake and N-utilization efficiency. A set of hybrids was generated with parent lines showing superior testcross performance at low or high N-levels, designated L-lines and H-lines, respectively. Field trials were conducted in 14 environments: each trial was grown under high (NH) and low (NL) nitrogen level. Under NL-conditions LxL-hybrids outyielded HxH-hybrids significantly, while at NH the HxH-hybrids showed higher grain yield than LxL hybrids. N-efficient hybrids did not show increased drought tolerance. LxL-hybrids tended to have higher yield stability than HxH-hybrids. Significant increase of heterosis for the traits dry matter yield and dry matter content was not found, neither at NL nor at NH-level. Under NL-conditions N-uptake was reduced, but N-utilization efficiency increased.