Browsing by Subject "Nutrient stress"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Cannabis Hunger Games: nutrient stress induction in flowering stage – impact of organic and mineral fertilizer levels on biomass, cannabidiol (CBD) yield and nutrient use efficiency(2023) Massuela, Danilo Crispim; Munz, Sebastian; Hartung, Jens; Nkebiwe, Peteh Mehdi; Graeff-Hönninger, SimoneIndoor medicinal cannabis cultivation systems enable year-round cultivation and better control of growing factors, however, such systems are energy and resource intensive. Nutrient deprivation during flowering can trigger nutrient translocation and modulate the production of cannabinoids, which might increase agronomic nutrient use efficiency, and thus, a more sustainable use of fertilizers. This experiment compares two fertilizer types (mineral and organic) applied in three dilutions (80, 160 and 240 mg N L−1) to evaluate the effect of nutrient deprivation during flowering on biomass, Cannabidiol (CBD) yield and nutrient use efficiency of N, P and K. This is the first study showing the potential to reduce fertilizer input while maintaining CBD yield of medicinal cannabis. Under nutrient stress, inflorescence yield was significantly lower at the final harvest, however, this was compensated by a higher CBD concentration, resulting in 95% of CBD yield using one-third less fertilizer. The higher nutrient use efficiency of N, P, and K in nutrient-deprived plants was achieved by a larger mobilization and translocation of nutrients increasing the utilization efficiency of acquired nutrients. The agronomic nutrient use efficiency of CBD yield – for N and K – increased 34% for the organic fertilizers and 72% for the mineral fertilizers comparing the dilution with one-third less nutrients (160) with the highest nutrient concentration (240). Differences in CBD yield between fertilizer types occurred only at the final harvest indicating limitations in nutrient uptake due to nutrient forms in the organic fertilizer. Our results showed a lower acquisition and utilization efficiency for the organic fertilizer, proposing the necessity to improve either the timing of bio-availability of organic fertilizers or the use of soil amendments.Publication Decline of seedling phosphorus use efficiency in the heterotic pool of flint maize breeding lines since the onset of hybrid breeding(2021) Li, Xuelian; Mang, Melissa; Piepho, Hans‐Peter; Melchinger, Albrecht; Ludewig, UweImproved management and breeding increased maize (Zea mays L.) yields over the last century, but nutritional efficiency was usually not the focus. This study investigates whether old and recently released flint and dent maize seedlings vary in the phosphorus (P) acquisition and utilization. P use efficiency (PUE) and related traits were measured and compared at two P levels in a calcareous soil. PUE and P acquisition efficiency (PAE) from founder flints to elite flints declined over the last decades. This was associated with smaller root systems, reduced ability to exploit external P, decreased rhizosphere pH and shorter root hairs in low P. Comparing flints with doubled haploid landraces (DH_LR), old and elite dents and hybrids revealed that dents started to acquire exogenous P earlier and had improved PUE. Most DH_LRs had similar PUE as elite flints. When evaluating root traits associated with P efficiency, seed P was also critical, and it is important to stack different root traits to optimize PUE, P utilization efficiency (PUtE) and PAE in breeding programmes. The root hair length, the ability to acidify the rhizosphere and the root diameter in flint and dent pools may be utilized to improve P use in maize germplasm.