Repository logo
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
    Communities & Collections
    All of hohPublica
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
  1. Home
  2. Browse by Subject

Browsing by Subject "Object detection"

Type the first few letters and click on the Browse button
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Publication
    DeepCob: precise and high-throughput analysis of maize cob geometry using deep learning with an application in genebank phenomics
    (2021) Kienbaum, Lydia; Correa Abondano, Miguel; Blas, Raul; Schmid, Karl
    Background: Maize cobs are an important component of crop yield that exhibit a high diversity in size, shape and color in native landraces and modern varieties. Various phenotyping approaches were developed to measure maize cob parameters in a high throughput fashion. More recently, deep learning methods like convolutional neural networks (CNNs) became available and were shown to be highly useful for high-throughput plant phenotyping. We aimed at comparing classical image segmentation with deep learning methods for maize cob image segmentation and phenotyping using a large image dataset of native maize landrace diversity from Peru. Results: Comparison of three image analysis methods showed that a Mask R-CNN trained on a diverse set of maize cob images was highly superior to classical image analysis using the Felzenszwalb-Huttenlocher algorithm and a Window-based CNN due to its robustness to image quality and object segmentation accuracy (r = 0.99). We integrated Mask R-CNN into a high-throughput pipeline to segment both maize cobs and rulers in images and perform an automated quantitative analysis of eight phenotypic traits, including diameter, length, ellipticity, asymmetry, aspect ratio and average values of red, green and blue color channels for cob color. Statistical analysis identified key training parameters for efficient iterative model updating. We also show that a small number of 10–20 images is sufficient to update the initial Mask R-CNN model to process new types of cob images. To demonstrate an application of the pipeline we analyzed phenotypic variation in 19,867 maize cobs extracted from 3449 images of 2484 accessions from the maize genebank of Peru to identify phenotypically homogeneous and heterogeneous genebank accessions using multivariate clustering. Conclusions: Single Mask R-CNN model and associated analysis pipeline are widely applicable tools for maize cob phenotyping in contexts like genebank phenomics or plant breeding.
  • Loading...
    Thumbnail Image
    Publication
    Poultry perfection : comparison of computer vision models to detect and classify poultry products in a production setting
    (2025) Einsiedel, Daniel; Vita, Marco; Jox, Dana; Dunnewind, Bertus; Meulendijks, Johan; Krupitzer, Christian
    This study explores the use of computer vision, specifically object detection, for quality control in ready-to-eat meat products. We focused on a single process step, labeling products as “good” or “imperfect”. An “imperfect product” constitutes a product that deviates from the norm regarding shape, size, or color (having a hole, missing edges, dark particles, etc.). Imperfect does not mean the product is inedible or a risk to food safety, but it affects the overall product quality. Various object detectors, such as YOLO, including YOLO12, were compared using the mAP50-95 metric. Most models achieved mAP scores over 0.9, with YOLO12 reaching a peak score of 0.9359. The precision and recall curves indicated that the model learned the “imperfect product” class better, most likely due to its higher representation. This underscores the importance of a balanced dataset, which is challenging to achieve in real-world settings. The confusion matrix revealed false positives, suggesting that increasing dataset volume or hyperparameter tuning could help. However, increasing the dataset volume is usually the more difficult path since data acquisition and especially labeling are by far the most time-consuming steps of the whole process. Overall, current models can be applied to quality control tasks with some margin of error. Our experiments show that high-quality, consistently labeled datasets are potentially more important than the choice of the model for achieving good results. The applied hyperparameter tuning on the YOLO12 model did not outperform the default model in this case. Future work could involve training models on a multi-class dataset with hyperparameter optimization. A multi-class dataset could contain more specific classes than just “good” and “imperfect,” making trained models capable of actually predicting specific quality deviations.

  • Contact
  • FAQ
  • Cookie settings
  • Imprint/Privacy policy