Browsing by Subject "Odor-active compounds"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Almond-like aroma formation of acid whey by Ischnoderma benzoinum fermentation: potential application in novel beverage development(2025) Hannemann, Lea; Klauss, Raphaela; Gleissle, Anne; Heinrich, Patrick; Braunbeck, Thomas; Zhang, YanyanTo address the sourish off-aroma of acid whey and enhance its upcycling, a new basidiomycete Ischnoderma benzoinum -mediated fermentation system was developed using pure acid whey as the sole substrate. A pleasant sweetish and marzipan-like odor was perceived after fermentation within 7 d at 24 °C in darkness, which was shaped from key contributors including 4-methoxybenzaldehyde (odor activity value (OAV) 878), 3-methylbutanal (OAV 511), 3,4-dimethoxybenzaldehyde (OAV 50), and benzaldehyde (OAV 28). The typical sweetish and almond-like odor persisted well after ultrahigh-temperature processing, though its intensity decreased slightly. Concurrently, the fermentation reduced lactose from 52 to 20 g/L but increased the contents of essential amino acids like threonine, leucine, and lysine. No significant cytotoxicity or genotoxicity differences were found between fermented and unfermented whey. Overall, the study highlights the capability of I. benzoinum fermentation to enhance the flavor of acid whey, offering a promising approach for creating nutritional and flavorful acid-whey-based products.Publication Flavor-boosting of Phaeodactylum tricornutum by fermentation with edible mushrooms(2024) Rigling, Marina; Liang, Jiaqi; Entenmann, Isa; Frick, Konstantin; Schmid-Staiger, Ulrike; Xiang, Can; Kopp, Lena; Bischoff, Stephan C.; Zhang, YanyanMicroalgae are a promising and sustainable source of nutritious food, especially for use in alternatives to fish and seafood. Among them, Phaeodactylum tricornutum (PT) stands out for its potential to revolutionize future diets with its rich nutrient profile and eco-friendly cultivation methods. However, its typically fishy and “brackish water” off-odor has been a significant deterrent. Using 13 basidiomycetes as starter cultures, the dynamic changes in the aroma were studied. To better understand the aroma development during fermentation, odor-active compounds were identified using headspace solid-phase microextraction coupled with gas chromatography–mass spectrometry–olfactometry. By submerged fermentation lasting 39 and 51 hours with Pleurotus citrinopileatus (PCI) and Pleurotus eryngii (PER), respectively, the unpalatable odor of PT was transformed into savory and seafood-like aromas, while retaining most of the valuable carotenoids (fucoxanthin and β-carotene were retained at 75 % and 90 %) and fatty acids (eicosapentaenoic acid and docosahexaenoic acid were preserved at 80 % of their initial concentrations). Throughout the fermentation process, key odorants responsible for the algae's initial green, grassy, and unpleasant odor were reduced, while compounds responsible for savory and seafood-like fragrances increased. A series of sulfur compounds, such as dimethyl disulfide, were found to be major contributors to the post-fermentation aroma.