Browsing by Subject "Phosphate"
Now showing 1 - 10 of 10
- Results Per Page
- Sort Options
Publication Cellular stress regulates fibroblast growth factor 23 (FGF23) und αklotho(2023) Münz, Sina; Föller, MichaelCellular stress is defined as the impairment of regular cell function by internal or external stimuli including critical temperatures, energy deficiency, infections, mechanic injury, or chemical noxae. The present thesis aims to investigate the influence of cellular stress on the expression of FGF23 and αklotho. FGF23 is predominantly produced in bone and regulates the phosphate excretion in the kidney. Thereby, αklotho functions as a co-receptor for FGF23. By binding to the FGF receptor-αklotho complex, FGF23 reduces the reabsorption of phosphate from the tubular lumen by decreasing the abundance of sodium-phosphate co-transporters. Furthermore, FGF23 decreases the synthesis of 1,25(OH)2D3, active vitamin D, and increases its degradation. 1,25(OH)2D3 is a regulator of intestinal phosphate absorption and therefore, FGF23 additionally reduces dietary phosphate uptake. Chronically elevated FGF23 is associated with numerous disorders such as kidney disease or CVD. Beside its function as a co-receptor of FGFR, αklotho has many beneficial FGF23-independent functions. It has originally been identified as an anti-aging hormone, as a loss-of-function mutation in the αklotho gene causes numerous aging-like symptoms such as vascular and tissue calcification, osteoporosis, sterility, and an early death. The present papers investigated the influence of cytostatic drugs cisplatin, paclitaxel, and doxorubicin as well as apoptosis inducers PAC-1 and serum depletion on the regulation of FGF23 and αklotho. In UMR106 rat osteoblast-like osteosarcoma cells, a 24 or 48 h-treatment with cisplatin, doxorubicin, PAC-1, or serum reduction and depletion significantly up-regulated Fgf23 expression. Under serum depletion, also FGF23 protein secretion was increased. In addition to FGF23, cisplatin and doxorubicin also increased gene expression of pro-inflammatory cytokine Il6 hinting at the presence of necrotic cell death. By inhibiting Il-6 membrane receptor gp130 it has been shown, that FGF23 stimulation partially depended on IL-6 signaling. The stimulation of FGF23 by inflammatory mediators including IL-6, TNFα, TGF-β, or IL-1β has already been reported by others. Furthermore, inflammatory diseases such as rheumatoid arthritis, CKD, or inflammatory bowel disease are associated with excess FGF23 serum concentrations. In this regard, we investigated gene expression and activation of the transcription factor NFκB, which regulates numerous inflammatory functions. Cisplatin and doxorubicin increased the expression of NFκB subunit Rela and cisplatin also stimulated the phosphorylation of NFκB. Independently, NFκB inhibitors wogonin and withaferin A attenuated cisplatin-mediated stimulation of FGF23 indicating, that FGF23 excess was in part promoted by NFκB signaling. These investigations confirmed a strong impact of cisplatin or doxorubicin-induced inflammation on FGF23 synthesis, whereas PAC-1 and serum depletion have reported to directly induce apoptosis, which is commonly not associated with inflammation. Known factors, induced by all cytotoxic substances used here, are the formation of ROS and activation of HIF1α. Both are positive regulators of FGF23, leading to the conclusion, that cellular stress might regulate FGF23 via HIF1α or oxidative stress. FGF23 excess results in increased bone resorption and suppressed bone formation. Likewise, also chemotherapeutic drugs and serum deficiency reduce bone density. Therefore, the stimulation of FGF23 may cause or further stimulate bone resorption. In paper 2, the influence of the cytostatic drugs cisplatin, paclitaxel, and doxorubicin as well as apoptosis inductors PAC-1 or serum depletion on αklotho expression in renal MDCK, NRK-52E, and HK-2 cells has been investigated. In fact, all cytotoxic compounds stimulated gene expression of αklotho while decreasing cell proliferation and viability. By using a combined apoptosis and necrosis assay, we confirmed the induction of apoptosis but also necrosis to a variable extent. Additionally, the transcriptional regulation of apoptotic proteins of the BCL-2 family was assessed and confirmed apoptosis stimulation. Transcription factor PPARγ is a known positive regulator of αklotho. In MDCK cells, we detected a significant influence of cisplatin-mediated stimulation of PPARγ mRNA on the αklotho increase. Furthermore, cisplatin, doxorubicin, PAC-1, and serum deprivation also up-regulated FGFR production in MDCK cells. In cancer cells, overexpression of FGFR is associated with enhanced resistance against chemotherapeutic drugs. Consequently, αklotho and FGFR1 stimulation may be a protective mechanism to prevent hyperphosphatemia during diseases. However, human HK-2 cells treated with cisplatin, paclitaxel, doxorubicin, or serum depletion significantly down-regulated αklotho expression and protein secretion. PAC-1 did not change the expression or production of αklotho in HK-2 cells, which might be explained by the minor effect of PAC-1 on non-carcinogenic cells lacking an overexpression of procaspase-3. The differential regulation of αklotho in MDCK and NRK-52E versus HK-2 cells by cytotoxic stress might have numerous causes. For instance, there is evidence of an increased sensitivity of HK-2 cells to stress stimuli but a better comparability to the animal model. However, immortalized cell lines can not completely reflect the conditions of native tissue especially with regard to cell death. Furthermore, the species, sex or age of the donor organism as well as passage number of the cells and drug transporter expression might impact αklotho regulation. Additionally, the mode of cell death determined by intracellular ATP homeostasis and its regulation of AMPK might play an important role in αklotho regulation. However, all these theories need to be further addressed. In summary, inflammation, ROS formation, or the activation of HIF1α are all reported to correlate in a negative manner with αklotho production or serum levels. αklotho down-regulation may be a tool to increase cell proliferation or prevent hypophosphatemia. In contrast, AMPK activation by intracellular ATP restriction may positively regulate αklotho to promote cell protection and avoid hyperphosphatemia.Publication Characterization of phosphate fertilizers recycled from biogas digestates and their influenceon plant-soil fertility indicators(2022) Bach, Inga-Mareike; Müller, TorstenPhosphor (P) supply to plants is a key production factor for quantity and quality of food in agriculture. P consumption in modern agriculture has increased with raising world population. Mineral P fertilizer derived from Phosphate Rock (PR) mines is a limited resource on earth and large amounts of P used in agriculture are diluted by distribution into the environment, causing unwanted environmental side effects. Future oriented use of P therefore has to be based on technologies for P-recycling from the main anthropogenic product streams. In this thesis, P recycling products from a pilot plant were investigated for their biological efficien-cy as fertilizer in comparison to a conventional mineral fertilizer triple superphosphate (TSP). Investigations were part of two research projects (BioEcosim & GOBi) that had the goal to develop scalable technology for a sustainable P recycling in agriculture. Inputs into the pilot plant were unprocessed pig manure, and on the other hand a biogas co-digestate from cow manure and maize. Outputs were salt precipitates (P-Salt) from the separated liquid fractions with high P content, and solid fractions dried by pyrolysis, air-drying or steam-drying with moderate P content and high organic carbon. The objective of the work described here was the biological and agronomical investigation of the recycled fertilizer fractions for their potential to substitute a mineral fertilizer. In a first step, the obtained fractions were chemically characterized for basic characteristics. Based on the P content of the recycled fertilizers, greenhouse pot experiments were set up to compare equivalent P concentrations of single doses and combinations, in different crops and soils, with TSP and an unfertilized control as reference. Fertilizers were applied once before the beginning of the vegetation phase at recommended field rates. Variables investigated were above ground plant biomass production, concentration, and content of P in shoots, and plant-available P in soil. The characterization of the precipitated P rich fractions revealed that the composition of the P bound minerals was a mixture of magnesium ammonium phosphate (struvite) and calcium phosphates. Their total P content (circa 110 g/kg DM) was slightly lower than TSP (190 g/kg). The organic solids contained lower (circa 20 g/kg) but still significant amounts of P. All fractions dis-played a slightly alkaline pH in CaCl2, between 7 and 8.5. In all experiments, single dosing with the recycled P-Salt fractions resulted in fertilizer effects on biomass growth similar or higher than the reference TSP. This result was found in all soils and crops investigated, indicating that the recycled P-Salt was an effective substitute for TSP. Under the conditions tested, three of the investigated crops, namely marigold, Chinese cabbage and ryegrass, did not develop P induced biomass increase at all, probably because the relevant growth phases were not covered or because the initial P concentrations in soil were already equal or above the optimum P concentration in soil. Highest effects were found in maize, a typical input crop for biogas plants. The single dosing of the isolated solid fractions in two acidic soils, using maize and sunflower, resulted in an even higher biomass increase compared to TSP and P-Salt, whereas effects were generally lower in neutral soils. Steam-dried solids showed a tendency to be superior to air-dried and pyrolyzed solids. When some combinations of solids with P-Salt were applied, biomass increased to an extent equal or higher than P-Salt or TSP alone. Effects were partly synergistic or additive, but never antagonistic. Different mixing techniques investigated resulted in only small differences in biomass increase. A fertilizer induced increase of P concentration or content in the above ground plant biomass, dependent on the plant growth rate, was found in almost every tested crop. The results indicate that uptake of P from soil treated with recycled fertilizers occurred to the same extent than with TSP, independent from the individual growth rate. Plant available P in soil, detected as CAL-P, was increased by all fertilizer fractions compared to untreated controls. This suggests that the chemical composition of the recycled P fertilizers was favorable for a high release of plant available P in soil and underlines the high technical quality of the established manufacturing processes. Overall, the results indicate that P fertilizers recycled from unprocessed manure or biogas plant digestates can be used as an adequate substitute for mineral P fertilizer in a range of different crops and soils. Confirmation of the results in the field and adoption to actual crop-soil-climate situations will be needed for practical use in agriculture. A detailed sustainability evaluation, taking into account all input and output parameters, will help to assess the practical use, applicability and value of the described recycling process.Publication Einfluss von Phosphatmangel und erhöhter atmosphärischer CO2-Konzentration auf die Wurzelexsudation und ihre Auswirkungen auf Mobilisierung und Aufnahme von Schwermetallen durch verschiedene Lupinenarten und Tomate(2011) Kawanishi, Ayumi; Römheld, VolkerThere is an increasing awareness of a contamination of the food chain by toxic heavy metals as consequence of anthropogenic induced pollution of the environment since the industrialization in the 18. century. In addition the CO2 concentration might promote the biomass formation of plants and thus, via an increased allocation of photo-assimilates into the roots, chemical changes in the rhizosphere. These changes can promote mobility and uptake of various heavy metals by crop plants, too. Therefore it was the main objective of this Ph.D. research, to study the possible consequences of such observed increase in the atmospheric CO2 concentration on the intensification of the rhizosphere chemistry on the uptake of heavy metals by selected plant species in continuation of the research work by Egle (2003) at the University Göttingen. As plant species various lupinus species and tomato were chosen, which differ in principle in their reaction to a low phosphate nutritional status such as root growth characteristics and secretion of protons and carboxylates. As approach two nutrient solution experiments (Chapter 4 and 5) and a soil experiment with heavy metal polluted soils (Chapter 6) were conducted. In both nutrient solution experiments the well-described root-induced changes such as proton and carboxylate release could be confirmed, which were intensified at higher atmospheric CO2 concentrations (Chapter 4 and 5). Surprisingly the detected increase in proton (tomato) and caboxylate release (particularly by white lupin) with a simultaneously increased mobility of Cu and Cd in the soil did not result in an increased concentration of heavy metals in roots and shoots of the growth experimental plants. The unexpected finding in chapter 6 were discussed in the outlook of chapter 6 (6.7) and a repetition of this experiment with consideration of the discussed aspects is urgently recommended.Publication Fertilizer placement and the potential for its combination with bio-effectors to improve crop nutrient acquisition and yield(2016) Nkebiwe, Peteh Mehdi; Müller, TorstenEven when total nitrogen (N) and phosphorus (P) concentrations in most agricultural soils are high, the concentrations of plant-available N and P fractions are often inadequate for acceptable yield. In comparison to conventional fertilizer application by homogenous broadcast over the soil surface (with or without subsequent incorporation), fertilizer placement in defined soil areas/volumes close to seeds or crop roots is a more effective application method to enhance the plant-availability of applied fertilizers. Nevertheless, considerable root growth in subsurface nutrient patches or around concentrated fertilizer-depots (and/or improved nutrient influx rates in roots) is a prerequisite for improved uptake of placed nutrients. Furthermore, zones with intense rooting around placed fertilizer depots (“rhizosphere hotspots”) with high concentrations of organic nutrients released as root exudates may be favorable for the survival and establishment of inoculated plant-growth-promoting microorganisms (PGPMs), which mobilize nutrients in soil to favor plant growth. In the last three decades, several published field studies comparing fertilizer placement to fertilizer broadcast arrived at different and often conflicting results regarding their effects on yield and nutrient status of various crops. For this reason, the first task was to conduct a Meta-analysis on data in published peer-reviewed field studies on fertilizer placement that met a set of pre-defined criteria for inclusion. We investigated the relative effect of fertilizer placement for specific fertilizer formulations (e.g. NH4+ and CO(NH2)2 without or in combination with soluble P (HPO42-; H2PO4-); soluble K; solid or liquid manure) in a precise restricted area on surface or subsurface soil in comparison to fertilizer broadcast on yield, nutrient concentration and content in above-ground plant parts. We utilized data from a total of 40 field studies published between 1982 and 2015 (85% of studies published from 2000) that met our criteria. We used the method of “baseline contrasts” to compare different fertilizer placement treatments to fertilizer broadcast as a common control or baseline treatment. Results showed that overall, fertilizer placement led to +3.7% higher yields, +3.7% higher concentrations of nutrients in above-ground plant parts and +11.9% higher contents of nutrients also in above-ground plant parts than fertilizer broadcast application. Placement depth had a strong effect of the outcome of fertilizer placement because relative placement effects increased with increasing fertilizer placement depth. Composition of fertilizer formulations was also an important factor. High yields of fertilizer placement relative to fertilizer broadcast application were obtained for CO(NH2)2 in combination with soluble P (HPO42-; H2PO4-) (+27%) or NH4+ in combination with HPO42-; H2PO4- (+15%) (Nkebiwe et al., 2016 a: Field Crops Research 196: 389–401). The next aim was to investigate the effect of fertilizer placement in subsurface soil in combination with application of bio-effectors (BEs) (PGPMs and natural active substances such as humic acids and seaweed extracts) on root growth of crop plants, establishment of inoculated PGPM in the rhizosphere, grain and biomass production as well as plant nutrient status for maize (Zea mays L) and wheat (Triticum aestivum L) cultures. Through various pot and rhizobox experiments, we observed that placement of a subsurface concentrated NH4+-fertilizer depot stabilized with the nitrification inhibitor DMPP (3,4-di-methylpyrazolphosphate) induced dense rooting around the depot contributing to more efficient exploitation of the depot. For this, it was crucial the N persisted in the depot mainly as poorly mobile NH4+, in order to induce localized depot-zone root-growth as well as favorable chemical and biological changes in the rhizosphere to improve N and P uptake by crop plants. Through in vitro culture experiments on solid and liquid media, we could show that via acidification of the growth media, several selected microbial BEs were capable to solubilize sparingly soluble inorganic phosphates and also that these BEs showed considerable tolerance to high concentrations of NH4+ und DMPP. The latter indicated a potential for the BEs to colonize plant roots in NH4+-rich well rooted soil zones around a subsurface NH4+-fertilizer depot (Nkebiwe et al., 2016 c: Manuscript submitted). Through further pot experiments and four others experiments as Bachelor and Master theses conduction under my supervision, we observed that certain BEs that readily solubilized tri-calcium phosphates in vitro were able to mobilize rock phosphate (RP) applied in soil-based substrates when N was supplied as stabilized NH4++DMPP, thereby contributing to enhanced P uptake and growth of maize and wheat plants. The bacterial BE Pseudomonas sp. DSMZ 13134 and BE consortia products containing bacteria and fungi such as CombiFectorA were good candidates. BE-induced RP-solubilzation occurred mainly in substrates with low CaCO3 contents indicating low P sorption capacity for neutral and moderately alkaline soils. With CombiFectorA, maize P-acquisition from sewage sludge ash could be enhanced, thus increasing the efficiency of a sparingly soluble fertilizer based of recycled wastes. Possible explanations for the beneficial effects of best performing BEs to improve plant growth were enhanced solubility of sparingly soluble P fertilizers via acidification of the rhizosphere and release of nutrient-chelating substances as well as improvement of root growth for better spatial interception of nutrients (Nkebiwe et al., 2016 d: Manuscript in preparation). Alongside, more greenhouse and two field experiments (grain maize 2014 and maize silage 2015) were designed, planned, conducted and evaluated. A peer-reviewed paper from this work has already been published (Nkebiwe et al., 2016 b: Chemical and Biological Technologies in Agriculture 3:15). In the greenhouse and experiments, placement of a concentrated stabilized NH4+-fertilizer depot led to improved root and shoot growth, and increased shoot N and P contents. Through intense root growth of maize around the NH4+-depot, increased root-colonization by Pseudomonas sp. DSMZ 13134 close to seeds could be observed. In the field, many weeks after subsurface placement of the concentrated stabilized NH4+-depot, it could be shown that N considerably persisted in the depot-zone as NH4+, which strongly induced depot-zone root growth. Placement of the NH4+-depot led to +7.4 % increase in grain yield of maize (2014) and +5.8% increase in maize silage yield (2015) in comparison to fertilizer broadcast. Placement of Pseudomonas sp. DSMZ 13134 inoculum in the sowing row let to +7.1% increase in yield of maize silage (2015) in comparison to the non-inoculated control. In total, these results showed that precise placement of specific fertilizer formulations in combination with the application of selected PGPMs can lead to improved plant growth, improved N and P uptake with a potential to save resources.Publication Mechanismen der Resistenzinduktion nach Blattbehandlungen mit Phosphaten(2002) Orober, Miroslav; Buchenauer, HeinrichIn this study the induction of resistance against plant diseases following foliar application of phosphates was investigated. The early biochemical responses of the resistance activation by phosphates have been compared with other forms of induction of SAR such as the biotic induction with pathogens and treatment with synthetic plant defense activators. In cucumber plants foliar applications of phosphates lead to increased local and systemic acquired resistance against fungal pathogens such as Colletotrichum lagenarium, Sphaerotheca fuliginea and Pseudoperonospora cubensis. In tobacco foliar phosphate application enhanced resistance against TMV. For successful induction of SAR the occurrence of chlorotic/necrotic lesions on the phosphate treated inducer leaves was necessary. These reactions were accompanied by the occurrence of localized cell death, which was preceded by the generation of reactive oxygen species such as superoxide anions and hydrogen peroxide. Enhanced lipid peroxidation was observed in the treated leaves. Local phosphate treatments induced an increase of the concentrations of free and bound salicylic acid in the treated and distal leaves. Experiments with transgenic nahG-tobacco plants showed that the expression of SAR by phosphate treatments and TNV-inoculation was strictly dependent on the accumulation of salicylic acid. The activities of characteristic defense-related enzymes like peroxidases and polyphenoloxidases were highly increased in treated and in the distal leaves, respectively. In this study it could be shown that treatments with necrotizing chemicals such as phosphates cause similar cellular reactions as observed after biotic induction with pathogens which resulted in expression of SAR. Therefore it can be assumed that foliar phosphate treatments imitate the biotic induction of systemic acquired resistance.Publication Phosphate turnover during anaerobic digestion of chicken, pig and dairy manure(2023) Dinkler, Konstantin; Müller, JoachimPhosphate (P) is used extensively in agriculture. This has led to a reliance on P imports. Meanwhile, the framework for fertilization with digestate and manure in the European Union has become more stringent in recent years. Therefore, nutrients should be recovered as fertilizer to reduce dependencies, redistribute nutrient and amplify the product portfolio of biogas plants. Current nutrient recovery processes have in common that they are post digestion treatments of digestate, which neglect the phosphate behavior during digestion. It is necessary to closely evaluate P behavior during AD to optimize post digestion treatments of digestate by using digestion as a pretreatment for digestate. Therefore, it was the overall objective of this work to evaluate the turnover of P during anaerobic digestion in laboratory scale batch and continuous digestion systems. In laboratory experiments with batch reactor systems three different manures, namely pig, dairy and chicken manure were digested. Activated sludge served as inoculum. A set of 120 mL batch digesters were filled and individual bottles were opened after defined times and discarded afterwards until the last reactors were opened on day 30. The results showed that H2O-P and NaHCO3-P decreased over the digestion period by up to 40.1 %. Meanwhile, NaOH-P increased. Overall, it could be concluded that anaerobic digestion leads to a mineralization of P. The mineralization was especially profound during the first few days after the substrate was mixed with the inoculum, concluding that the ions in the inoculum played a significant role in this mineralization. In effect, AD reduces immediate plant availability but increases slow-release fertilization effects. During the batch experiments it was found that for a defined measurement wavelength for digestate the absorbance spectrum of digestate extracts needed to be analyzed and a drying temperature needed to be determined for sample treatment. For the evaluation of these two aspects samples were dried at 50°C and at 105°C and freeze dried. These samples and undried digestate were extracted by Hedley fractionation. The coloring agent was added to the extracts and the spectra between 600 nm and 1100 nm were measured. The spectral lines showed two peaks (709 nm and 889 nm). The lower wavelength proved to be more stable at low absorbance, making this the better wavelength for analysis. The analysis of the Hedley extracts showed that drying increases the H2O-P and NaHCO3-P fraction by up to 70 %. The samples were rinsed with preceding solvent to increase accuracy. Overall, the adapted method achieved higher accuracy for H2O-P, NaHCO3-P than the former method. The adapted fractionation was used for the analysis of samples during experiments in continuously stirred tank reactors. Chicken and dairy manure were each co-digested with straw and the parameters OLR and temperature were varied. The results showed that OLR had a negative correlation with H2O-P, which decreased by up to 50.49 %. Meanwhile, HCl-P increased significantly in chicken manure digestate, showing a positive correlation with OLR. It was proven that temperature has a minor effect on P transformation with a slightly higher mineralization of P under thermophilic conditions. Especially the high calcium concentration in chicken manure dominated the P turnover during the digestion, which can also be seen in the positive correlation of OLR with HCl-P as well as a high Pearson correlation coefficient above 0.85 for calcium and phosphate in chicken manure digestion. The results of this work have proven that P changes its chemical composition significantly during anaerobic digestion. The parameters of the digestion process had a decisive effect on the final composition with OLR and substrate composition being the major drivers. The results further showed that gas production and high P solubility are in conflict because for increased H2O-P OLR needs to be reduced. Future work should focus specifically on the combination of this anaerobic digestion and post-digestion treatments for cost effective recovery. This can play a key role for future profitability of biogas projects.Publication Short‐term fasting of mice elevates circulating fibroblast growth factor 23 (FGF23)(2023) Feger, Martina; Alber, Jana; Strotmann, Jörg; Grund, Andrea; Leifheit‐Nestler, Maren; Haffner, Dieter; Föller, MichaelAims: Phosphate and vitamin D homeostasis are controlled by fibroblast growth factor 23 (FGF23) from bone suppressing renal phosphate transport and enhancing 24-hydroxylase (Cyp24a1), thereby inactivating 1,25(OH)2D3. Serum FGF23 is correlated with outcomes in several diseases. Fasting stimulates the production of ketone bodies. We hypothesized that fasting can induce FGF23 synthesis through the production of ketone bodies. Methods: UMR106 cells and isolated neonatal rat ventricular myocytes (NRVM) were treated with ketone body β-hydroxybutyrate. Mice were fasted overnight, fed ad libitum, or treated with β-hydroxybutyrate. Proteins and further blood parameters were determined by enzyme-linked immunoassay (ELISA), western blotting, immunohistochemistry, fluorometric or colorimetric methods, and gene expression by quantitative real-time polymerase chain reaction (qRT-PCR). Results: β-Hydroxybutyrate stimulated FGF23 production in UMR106 cells in a nuclear factor kappa-light-chain enhancer of activated B-cells (NFκB)-dependent manner, and in NRVMs. Compared to fed animals, fasted mice exhibited higher β-hydroxybutyrate and FGF23 serum levels (based on assays either detecting C-terminal or intact, biologically active FGF23 only), cardiac, pancreatic, and thymic Fgf23 and renal Cyp24a1 expression, and lower 1,25(OH)2D3 serum concentration as well as renal Slc34a1 and αKlotho (Kl) expression. In contrast, Fgf23 expression in bone and serum phosphate, calcium, plasma parathyroid hormone (PTH) concentration, and renal Cyp27b1 expression were not significantly affected by fasting. Conclusion: Short-term fasting increased FGF23 production, as did administration of β-hydroxybutyrate, effects possibly of clinical relevance in view of the increasing use of FGF23 as a surrogate parameter in clinical monitoring of diseases. The fasting state of patients might therefore affect FGF23 tests.Publication Suitability of recycled organic residues from animal husbandry and bioenergy production for use as fertilizers(2021) Bauerle, Andrea; Lewandowski, IrisIn recent years, agriculture has been increasingly faced with the acute need to find a more sustainable practice for dealing with nutrient-rich organic side streams. For ecological and economic reasons, pressure is mounting every day to implement an improved utilisation and to close nutrient loops in agriculture to the maximum possible. Pig manure and biogas digestates are suitable as organic fertilisers because they contain essential plant nutrients. They also provide organic matter that contributes to the maintenance of soil fertility. However, their current use is often insufficient. Both residues can be used as fertilisers either directly or following treatment. This can be as simple as solid-liquid separation. A more advanced approach is the precipitation of phosphorus for conversion into phosphate fertilisers ("P-Salts"). The fertilising effect of such innovative P-Salts needs to be investigated in an agronomic context. The same applies for the integration of separated biogas digestates as organic fertilisers into different biomass production systems. The primary objective of this thesis is to establish whether recycled fertilisers from organic residues are comparable to mineral fertilisers and can serve as a suitable substitution. For this purpose, five specific objectives were defined: (1) to determine whether separated biogas digestates can complement or substitute mineral fertilisers and whether/how they affect long-term yield performance in different biomass cropping systems; (2) to ascertain which type of separated biogas digestate is suitable for which biomass production system; (3) to test the effect of two recycled P-Salts on yield and quality of different crops compared to triple superphosphate (TSP); (4) to examine whether the combination of recycled P-Salts with biochar and dried solid digestates results in interaction effects; and (5) to assess whether there are differences in the uptake efficiency of recycled and mineral fertilisers between different crop types. Thus, several experiments were carried out. The fertilising effect of separated biogas digestates on three biomass production systems (perennial grassland, intercropping of triticale and clover grass, silage maize) was investigated in multi-year field experiments in south-west Germany. P-Salt and biochar from pig manure were tested in a greenhouse study with spring barley and faba bean. In a second greenhouse study with ornamentals, the P-Salt from manure, a P-Salt from biogas digestate, and dried solid digestates were assessed. The long-term yield stability of biomass cropping systems fertilised with separated biogas digestates was clearly demonstrated under field conditions. Separated biogas digestates can substitute mineral fertiliser in perennial and intercropping systems. Solid digestates were most suitable for cropping systems with soil tillage where their incorporation into soil is possible. The intercropping of triticale and clover grass was found to be the most stable system, with constantly high biomass yields being maintained using only digestates. For maize, a combined application of digestates and mineral fertiliser proved to be the best option. The P-Salt from manure had the same or even better effects than TSP on spring barley and faba bean. In the experiment with ornamentals, the two P-Salts from manure and digestate had more or less the same effect as TSP on biomass production. These results suggest that both P-Salts have an equivalent fertilisation effect to TSP and can thus replace it as mineral fertiliser. In this thesis, it was possible to achieve competitive yield results with the tested fertilisers, provided that they are integrated in a suitable fertilising strategy. The next step is for the recycled fertilisers to be actually used in agricultural practice - a prerequisite for which being that their implementation has agronomic, practical, ecological and economic advantages. The enhanced use efficiency of N and P already available on farms is challenging but necessary to reduce dependency on both synthesised N fertilisers and imported P fertilisers. This thesis significantly contributes by providing knowledge on the fertilising effect of selected recycled fertilisers necessary for their future implementation in agriculture. Optimised nutrient management and residue treatment using advanced technologies can contribute to the further closing of nutrient cycles. The highest environmental benefits can be realised on farms with excess residues and limited agricultural land. It is therefore highly recommended that these farms improve their current practice by prioritising the implementation of appropriate measures. Sound residue management necessitates strategic planning and capital investments from farmers and companies, but is a crucial step towards the sustainable intensification of cropping systems and resilient future agriculture.Publication Tachysterol2 increases the synthesis of fibroblast growth factor 23 in bone cells(2022) Ewendt, Franz; Kotwan, Julia; Ploch, Stefan; Feger, Martina; Hirche, Frank; Föller, Michael; Stangl, Gabriele I.Tachysterol2 (T2) is a photoisomer of the previtamin D2 found in UV-B-irradiated foods such as mushrooms or baker’s yeast. Due to its structural similarity to vitamin D, we hypothesized that T2 can affect vitamin D metabolism and in turn, fibroblast growth factor 23 (FGF23), a bone-derived phosphaturic hormone that is transcriptionally regulated by the vitamin D receptor (VDR). Initially, a mouse study was conducted to investigate the bioavailability of T2 and its impact on vitamin D metabolism and Fgf23 expression. UMR106 and IDG-SW3 bone cell lines were used to elucidate the effect of T2 on FGF23 synthesis and the corresponding mechanisms. LC-MS/MS analysis found high concentrations of T2 in tissues and plasma of mice fed 4 vs. 0 mg/kg T2 for 2 weeks, accompanied by a significant decrease in plasma 1,25(OH)2D and increased renal Cyp24a1 mRNA abundance. The Fgf23 mRNA abundance in bones of mice fed T2 was moderately higher than that in control mice. The expression of Fgf23 strongly increased in UMR106 cells treated with T2. After Vdr silencing, the T2 effect on Fgf23 diminished. This effect is presumably mediated by single-hydroxylated T2-derivatives, since siRNA-mediated silencing of Cyp27a1, but not Cyp27b1, resulted in a marked reduction in T2-induced Fgf23 gene expression. To conclude, T2 is a potent regulator of Fgf23 synthesis in bone and activates Vdr. This effect depends, at least in part, on the action of Cyp27a1. The potential of oral T2 to modulate vitamin D metabolism and FGF23 synthesis raises questions about the safety of UV-B-treated foods.Publication The influence of phosphate-availability and phytic acid on the profiles of fatty acids, (poly)phenols, carotenoids, and tocochromanols in maize (Zea mays L.) grains – from field experiments to human in vitro digestion studies(2022) Lux, Peter Erwin; Frank, JanPhosphorus (P) is an essential element for living organisms and involved in phosphorylation reactions, including the biosynthesis of several organic micronutrients. Since P is taken up by plants from soil as phosphates, phosphate fertilizers are applied on fields to support the P-supply for crops. Today, shrinking global P-resources demand a reduction in the application of P-containing fertilizers, but knowledge about possible effects of a reduced phosphate-availability in soils on the quality of maize grains is lacking. Thus, it was hypothesized that a reduced phosphate-availability in soil influences the concentrations of dietary organic compounds (phenolics, fatty acids, carotenoids, and tocochromanols) in grains of maize during cultivation. Moreover, concentration differences in the P-storage form phytic acid in maize grains may impact the oxidative stability of these organic compounds during processing and digestion. Fertilizer experiments with maize hybrids were conducted at study sites with low to high phosphate concentrations in soil (1.6 to 20.6 mg CAL-P/100 g soil) in Germany. GC-MS or HPLC-(MS) analyses of the ground maize grains revealed the identity of fatty acids, insoluble (mostly diferulic and triferulic acids) and soluble (poly)phenols, carotenoids, and tocochromanols. The concentrations of these (poly)phenols, carotenoids, and tocochromanols as well as the fatty acid composition in the grains of the maize plants grown with or without phosphate fertilizer were not significantly (p < 0.05) different. Interaction effects between phosphate application and the locations on the fatty acid composition as well as on carotenoids and tocochromanols were considered as insignificant, concluding that a reduction in phosphate fertilization could be implemented on most fields in Germany when only considering these dietary compounds. Lastly, the influence of phytic acid on oxidation processes in maize during processing of porridge and in vitro digestion was examined. Porridges were prepared from maize flour containing either high phytic acid concentration or low phytic acid concentration supplemented with or without phytate. The porridges were digested using a human in vitro digestion model, resulting in a decrease in tocochromanols, carotenoids and unsaturated fatty acids. Oxidation products (alpha-tocopherylquinone, malondialdehyde) were formed in all samples, implying that phytic acid addition did not show the expected protective effect. The addition of phytate evoked a significant reduction in the micellarization efficiency of most carotenoids. Thus, the knowledge about phytic acid as antinutrient was extended.