Browsing by Subject "Phosphor"
Now showing 1 - 20 of 24
- Results Per Page
- Sort Options
Publication Alternative phosphorus resources from urban waste as fertilization(2023) You, Yawen; Müller, TorstenPhosphorus (P) is an essential macronutrient for plants. Plant roots assimilate P in soil mainly in the form of orthophosphates as H2PO4- and HPO42-. Due to the high reactivity, orthophosphates generally exist at low concentrations in soils that have high P sorption capacity. Besides the indigenous P in soil, fertilizers manufactured from phosphate rock are the main source of P to ensure a satisfactory yield in agricultural production. However, phosphate rock is a limited reserve with uneven quality and is geographically restricted. Technologies for recovering and reusing the P from waste streams were therefore developed to alleviate the dependency on this critical raw material and to promote sustainable solutions. Sewage sludge, which contains most of the P from wastewater, has great potential to produce P-rich products. However, the evaluation of their P availabilities to plants by simple chemical extraction of the product is difficult because they often contain different P species that do not easily dissolve in water. In the first chapter, three types of recycled P fertilizers derived from sewage sludge were tested first in the greenhouse using maize in two different substrates and were incubated in soil for 0, 22, and 56 days. Untreated sewage sludge ash (SSA), Na-treated SSA, and struvite were tested here. Untreated SSA failed to promote the growth of young maize, while Na-treated SSA and struvite achieved similar biomass as mineral P fertilizer. The pre-incubation time had a negative impact on the P use efficiency of recycled fertilizers. Although the P availability of untreated SSA was very low, it might be a potential substitute for phosphate rock to produce fertilizers. In Chapter II, the P availability and heavy metal contamination risk of superphosphate produced with untreated SSA in the lab were investigated. It was found that the superphosphate produced with the mixture of 25% SSA and 75% rock phosphate had a similar P use efficiency as the superphosphate produced with 100% rock phosphate, indicating untreated SSA could be a suitable substitution of rock phosphate in the P fertilizer production. Despite the heavy metal accumulations in soil and plant being minimal, the Pb and Cu concentration in untreated SSA exceeded the maximum limit according to the EU regulation on fertilizers and therefore its use is restricted in fertilizer production. The separation of industrial and municipal sludge before incineration is recommended to obtain SSAs with high P concentrations but less heavy metal. In Chapter III, the P availability of granulated struvite as affected by fertilizer application methods in comparison to di-ammonium phosphate (DAP) was investigated under field conditions. The experiment was conducted in one field in 2020 and repeated in an adjacent field in 2021. Two-year maize results showed an increase of 30% in maize yield and P content when struvite was placed, indicating that fertilizer placement enhanced the efficiency of granulated struvite. Struvite-placed had similar P use efficiency as DAP-placed, and both treatments led to significantly higher yield and P content of maize than no-P control. The residual effect of fertilizer treatment was evaluated with faba bean (Vicia faba) and triticale (Triticosecale Wittm. ex A. Camus.) as subsequent crops after maize. No significant difference in yield and P content was found between struvite-placed and DAP-placed. Nevertheless, this chapter demonstrated that placed struvite can replace DAP as P fertilizer in maize cultivation. In Chapter IV, the sensitivity of three P extraction methods to different P species was investigated to provide insights into the characterization of current soil P tests to plant P availability. Three soil P tests were compared: calcium acetate-lactate (CAL), Olsen, and diffusive gradients in thin films (DGT). Results showed that a portion of added orthophosphates was immediately fixed in the soil and cannot be extracted by any of the methods. The acidic CAL method may overestimate immediately plant-available P of insoluble calcium phosphate like Ca3(PO4)2. The most suitable method to determine immediately available P might be the Olsen and DGT method. To conclude, this dissertation demonstrated the P availability of recycled P fertilizers derived from sewage sludge and possible strategies to enhance their P use efficiencies. It provided agronomic evidence on the feasibility of replacing phosphate rock-derived P fertilizers with recycled fertilizers and insight into its land application. With the recently revised EU regulation on fertilizing products, it can be expected that recycled fertilizers will soon share the market with mineral fertilizers and help develop sustainable agriculture.Publication Assessing the genetic variation of phosphate efficiency in European maize (Zea mays L.)(2022) Weiß, Thea Mi; Würschum, TobiasWhy should plant breeders in Central Europe care about phosphate efficiency? Soil phosphorus levels have mostly reached high to very high levels over the last decades in intensively farmed, livestock-rich regions. However, the European Union demands a restructuring of the agricultural production systems through setting ambitious goals envisaged in the Farm to Fork Strategy. By 2030, fertilizer use should be reduced by 20 %, nutrient losses by at least 50 %. As a consequence, farmers have to be even more efficient with crop inputs, among them the globally limited resource of phosphorus fertilizers, while maintaining high yields. Plant breeding means thinking ahead. Therefore, phosphate-efficient varieties should be developed to help farmers meet this challenge and reduce the need for additional fertilizers. One prerequisite to reach this target is that genotypic variation for the relevant traits is available. Moreover, approaches that assist selection by accurate but also time- and resource-efficient prediction of genotypes are highly valuable in breeding. Finally, the choice of the selection environment and suitable trait assessment for the improvement of phosphate efficiency under well-supplied conditions, need to be elaborated. In this dissertation, a diverse set of maize genotypes from ancient landraces to modern hybrids was investigated for phosphate efficiency-related traits under well-supplied P soil conditions. Multi-environmental field trials were conducted in 2019 and 2020. The reaction to different starter fertilizer treatments of the 20 commercially most important maize hybrids grown in Germany was studied. In the hybrid trial, the factor environment had a significant effect on the impact of starter fertilizers. Especially in early developmental stages genotypes showed a different response to the application of starter fertilizers. On the overall very well-supplied soils, we observed no significant genotype-by-starter fertilizer interaction. Nonetheless, we identified hybrids, which maintained high yields also if no starter fertilizer was provided. Thus, it seems that sufficient variation is available to select and breed for phosphate efficiency under reduced fertilizer conditions. Furthermore, the concept of phenomic prediction, based on near-infrared spectra instead of marker data to predict the performance of genotypes, was applied to 400 diverse lines of maize and compared to genomic prediction. For this, we used seed-based near-infrared spectroscopy data to perform phenomic selection in our line material, which comprised doubled haploid lines from landraces and elite lines. We observed that phenomic prediction generally performed comparable to genomic prediction or even better. In particular, the phenomic selection approach holds great potential for predictions among different groups of breeding material as it is less prone to artifacts resulting from population structure. Phenomic selection is therefore deemed a useful and cost-efficient tool to predict complex traits, including phosphorus concentration and grain yield, which together form the basis to determine phosphate efficiency. Lastly, 20 different indicators for phosphate efficiency were calculated, the genetic variation of the different measures present in this unique set of lines was quantified, and recommendations for breeding were derived. Of the different measures for phosphate efficiency reported in literature, Flint landraces demonstrated valuable allelic diversity with regard to phosphate efficiency during the seedling stage. Due to the highly complex genetic architecture of phosphate efficiency-related traits, a combination of genomic and phenotypic selection appears best suited for their improvement in breeding. Taken together, phosphate efficiency, including its definition and meaning, is largely dependent on the available phosphorus in the target environment as well as the farm type, which specifies the harvested produce and thereby the entire phosphorus removal from the field. In conclusion, future maize breeding should work in environments that are similar to the future target environments, meaning reduced fertilizer inputs and eventually lower soil P levels. Our results demonstrate that breeding of varieties, which perform well without starter fertilizers is feasible and meaningful under the well-supplied conditions prevalent in Central Europe. For the improvement of the highly complex trait phosphate efficiency through breeding we recommend to apply genomic and phenomic prediction along with classical phenotypic screening of genotypes and by this making our food systems more resilient towards upcoming challenges in agriculture.Publication Beiträge zur Ermittlung der P-Verwertung bei der Japanischen Wachtel(2008) Alfoteih, Yassen; Bessei, WernerAlthough there are plenty of studies concerning the metabolism and requirement of phosphorous (P) in poultry, the availability of P from organic and inorganic sources has still to be elucidated. Lacking knowledge on the availability of P has not caused problems in the past since commercial diets have been supplemented with P levels far above the requirement. Only when the excretion of P has been recognized as a source of environmental pollution, and poultry producers were forced to reduce P supplementation in the diet according to the requirement, need more of accurate information on the availability of P has stimulated research in this field. A series of experiments on the utilization of P from different organic and inorganic sources has been carried out using Japanese quail as a model for other poultry species. In addition, the role of the Ca: P ratio on the availability of P was investigated. A total of 6 experiments have been carried out. All experiments were carried out using almost the same methodology. Chicks of a commercial fast growing line of Japanese quail of french origin were hatched at the research station of the University of Hoheheheim and reared up to 3 weeks under standard conditions using a starter diet. Starting from week four, the birds were fed the experimental diets and data for the P-balance were collected for 7 consecutive days (fifth week of age). The components to be tested were added to a basal diet containing all nutrients with the exception of Ca and P. The utilization of P was calculated as difference between P intake and P excretion. The basal diet without supplementation of test-components was included in experiments since P utilization of the basal diet was needed to calculate the partial utilization of P from the test-components. In experiment A1 the utilization of P from summer barley and oats was tested. In Experiment A2 experimental diets comprised three different sources of P, each of plant origin (winter wheat, winter barley and maize) and of inorganic sources mono-calcium phosphate (MCP), di-calcium phosphate (DCP) and mono-sodium phosphate (MNP) were used. Mixtures of P sources tested in experiment A3 (MCP+DCP, MCP+MNP, MCP+maize, Wheat+ barley and wheat+ maize) were examined in experiment A3. The P level in the experimental diets was adjusted to a range of 2 to 3 g/kg and the Ca-level to 3 to 5 g/kg. The Ca:P ratio was restricted to a maximum of 2:1. The supplementation of the different types of grain to the diets was 60.0 to 66.0 %. Calcium carbonate (CaCo3) and sodium bicarbonate (NaHCo3) were used to supplement Ca. The result showed that, there was no significant difference among the experimental diets on weight gain of the birds. P utilization was highest in the basal diet (66.6 %) followed by barley and oats (33.3 and 20.8 % respectively), while the standard diet showed the lowest utilization (7.87 %). In experiment A2 the utilization of P of the basal diet (94 %) was significantly higher than of all other P-sources wheat (60 %), maize (66 %), while diet supplemented with barley showed the lowest value (34 %) and the other sources an intermediate position between 47 and 53 %. The partial utilization was somewhat lower than the overall utilization in all diets. In experiment A3 the utilization of P of the basal diet was 69 % and did not significantly differ from the other diets. The combination MCP+MNP showed the highest utilization (76 %), followed by wheat+barley (53 %) and MCP+maize (50 %). The partial utilization showed the similar values as the overall utilization. The three following experiments (B1, B2 und B3) dealt with the effects of different Ca: P ratios on the utilization of P, feed intake, growth rate and selected bone criteria. Four different Ca levels (0.80; 1.20; 1.60 and 2.20 %) were combined with three P levels (0.30; 0.45 and 0.60 %) in experiment B1. During Experiment B2, experimental diets contained three Ca concentrations at levels higher than in experiment B1 (2.60; 3.00 and 3.30 %) and three P concentrations at levels lower than in B1 (0.10; 0.20 and 0.30 %). Experiment B3 was conducted with the same Ca and P concentrations as in experiment B2, but the duration of the balance period was extended from 1 to 3 weeks. In addition of the P utilization and growth rate Ca and P contents of the tibia bones was analyzed and some bone characteristics were measured by computer tomography. In experiments B1 and B2 neither the P nor the Ca concentration showed a consistent effect on feed intake, growth rate, feed conversion or mortality. The P utilization decreased with increasing P concentration and P intake. The effect of the Ca: P interaction on P utilization was only significant in experiment B1. In the extended balance period in experiment B3, the effects of Ca and P concentration as well as their interaction was significant for body weight in the first week of the experiment. From the second week onwards the effects of the sources of variance decreased and fell under the level of significance. The P utilization was only influenced by the P concentration. As in the previous experiments P utilization decreased with increasing P concentration. Bone characteristics showed tendencial response to Ca and P concentration, whereby with the lowest concentrations of Ca and P in the diet, the highest bone weight, ach content, Ca and P content was found. Elevating Ca supply meliorated the total area and cortical area of the tibia. However, the better tibia quality based on evaluating the Strain Strength Index (SSI) as a criterion for the stability of bone was found in groups fed diets with the highest level of P. The results of these experiments showed that there is an obvious variation in the availability of P from the organic and mineral resources. The utilized P value from mineral resources was underestimated, while the utilized P value from organic resources overestimated. The P utilization of the combinations of different P sources which diverged in their P utilization showed intermediate values. The P concentrations of the diets and the P intake were the main influencing factors on P utilization. This result pointed out that the birds were capable to cover their requirements from P through the diets, although the P contents in the diets were low. The P contents of tested diets have met already the requirement of P with quails or even exceeded. The recommendations of P supply in quail diets need to be reduced accordingly. Should quail be used as model for the study of P requirement in broilers, it is essential either to decrease the P content drastically in the diets, or to conduct the tests at earlier age. The lower requirement of P in quail from 3 weeks of age onwards explains the weak reaction of feed intake and growth rate in response to the low P concentration and to extremely high Ca: P ratios. Some bone characteristics responded to low P concentrations and high Ca: P ratios even at higher ages. This confirms previous findings that P requirement for bone building is evidently higher than the P required for growth. The question posed by this result, weather growth rate or bone characteristics should be used to determine the requirement of P in poultry.Publication Bio-effectors for improved growth, nutrient acquisition and disease resistance of crops(2017) Weinmann, Markus; Neumann, GünterRecent scientific approaches to sustain agricultural production in face of a growing world food demand, limited natural resources, and ecological concerns have been focusing on biological processes to support soil fertility and healthy plant growth. In this context, the use of “bio-effectors”, comprising living (micro-) organisms and active natural compounds, has been receiving increasing attention. In contrast to conventional fertilizers and pesticides, the effectiveness of “bio-effectors” is essentially not based on the substantial direct input of mineral plant nutrients, neither in inorganic nor organic forms, nor of a-priori toxic compounds. Their direct or indirect effects on plant performance are rather based on the functional implementation or activation of biological mechanisms, in particular those interfering with soil-plant-microbe interactions. The general objective of the present research work was to improve the empirical and conceptual understanding concerning the utilization of bio-effectors in agricultural practice, following the principles of plant growth stimulation, bio-fertilization and bio-control. One main aspect of investigation was the application of bio-effectors to improve the efficiency of phosphorus (P) acquisition by the plant. Promising bio-preparations based on microbial inoculants (e.g. Bacillus, Pseudomonas, Trichoderma species) as well as natural compounds (e.g. algae extracts, humic acids) were tested in screening assays, greenhouse, and field experiments to characterize their potential effectiveness under varying environmental conditions. The most significant effects on plants appeared under severely low phosphate availability, but even under controlled conditions, bio-effectors required a narrow range of conductive environmental settings to reveal their potential effectiveness. Another focus of research was the application of bio-effectors to control soil borne pathogens, which typically appear in unsound crop rotations. Emphasis was set on take-all disease in wheat induced by the fungus Gaeumannomyces graminis. While the effectiveness of oat precrops to control take-all in subsequent wheat has been attributed to microbial changes and enhanced manganese (Mn) availability in soils, the take-all fungus is known to decrease the availability of Mn by oxidation. Against this background, the effectiveness of oat precrops and alternative crop management strategies to improve the Mn status and suppress the severity of take-all in wheat was investigated under controlled and field conditions. In conclusion, none of the tested supplemental treatments, such the application of microbial bio-effectors, stabilized ammonium or manganese fertilizers, could fully substitute for the multiple effectiveness of oat precrops, which was further confirmed by the results of a field experiment. Finally, some general conclusions and perspectives are summarized. Selected bio-effectors showed a strong capacity to improve the nutrient acquisition and healthy growth of crop plants under controlled conditions, but not in field experiments. However, even under controlled conditions the strongest effects occurred when plants were exposed to abiotic or biotic stresses, such as severely limited P availability or pathogen infestation of the soil substrate, still restricting plant growth to unproductive levels. Facing this situation, there is no perspective to improve the field efficiency of promising bio-effectors applications as a stand-alone approach. The only chance to develop viable alternatives to the conventional use of fertilizers or pesticides, for an ecological intensification of agriculture that maintains high yield levels, seems to be a reasonable integration of bio-effectors into the whole crop management of sound agricultural practice.Publication Bio-effectors for improved growth, nutrient acquisition and disease resistance of crops.- 2nd unrevised edition(2019) Weinmann, Markus; Madora GmbH, Luckestr.1, D-79539 Lörrach; Raupp, Manfred G.Recent scientific approaches to sustain agricultural production in face of a growing world food demand, limited natural resources, and ecological concerns have been focusing on biological processes to support soil fertility and healthy plant growth. In this context, the use of “bio-effectors”, comprising living (micro-) organisms and active natural compounds, has been receiving increasing attention. In contrast to conventional fertilizers and pesticides, the effectiveness of “bio-effectors” is essentially not based on the substantial direct input of mineral plant nutrients, neither in inorganic nor organic forms, nor of a-priori toxic compounds. Their direct or indirect effects on plant performance are rather based on the functional implementation or activation of biological mechanisms, in particular those interfering with soil-plant-microbe interactions. The general objective of the present research work was to improve the empirical and conceptual understanding concerning the utilization of bio-effectors in agricultural practice, following the principles of plant growth stimulation, bio-fertilization and bio-control. One main aspect of investigation was the application of bio-effectors to improve the efficiency of phosphorus (P) acquisition by the plant. Promising bio-preparations based on microbial inoculants (e.g. Bacillus, Pseudomonas, Trichoderma species) as well as natural compounds (e.g. algae extracts, humic acids) were tested in screening assays, greenhouse, and field experiments to characterize their potential effectiveness under varying environmental conditions. The most significant effects on plants appeared under severely low phosphate availability, but even under controlled conditions, bio-effectors required a narrow range of conductive environmental settings to reveal their potential effectiveness. Another focus of research was the application of bio-effectors to control soil borne pathogens, which typically appear in unsound crop rotations. Emphasis was set on take-all disease in wheat induced by the fungus Gaeumannomyces graminis. While the effectiveness of oat precrops to control take-all in subsequent wheat has been attributed to microbial changes and enhanced manganese (Mn) availability in soils, the take-all fungus is known to decrease the availability of Mn by oxidation. Against this background, the effectiveness of oat precrops and alternative crop management strategies to improve the Mn status and suppress the severity of take-all in wheat was investigated under controlled and field conditions. In conclusion, none of the tested supplemental treatments, such the application of microbial bio-effectors, stabilized ammonium or manganese fertilizers, could fully substitute for the multiple effectiveness of oat precrops, which was further confirmed by the results of a field experiment. Finally, some general conclusions and perspectives are summarized. Selected bio-effectors showed a strong capacity to improve the nutrient acquisition and healthy growth of crop plants under controlled conditions, but not in field experiments. However, even under controlled conditions the strongest effects occurred when plants were exposed to abiotic or biotic stresses, such as severely limited P availability or pathogen infestation of the soil substrate, still restricting plant growth to unproductive levels. Facing this situation, there is no perspective to improve the field efficiency of promising bio-effectors applications as a stand-alone approach. The only chance to develop viable alternatives to the conventional use of fertilizers or pesticides, for an ecological intensification of agriculture that maintains high yield levels, seems to be a reasonable integration of bio-effectors into the whole crop management of sound agricultural practice.Publication Bone ash data in the context of phosphorus and phytase evaluation in poultry(2021) Künzel, Susanne; Rodehutscord, MarkusPhosphorus (P) is an essential element that is crucial for various metabolic processes in the body of animals and humans. To keep the animals healthy and to obtain food products rich in nutrients, an adequate P supply is indispensable. Plant feedstuffs, the main components of poultry diets, contain P in a form that is only partially available to poultry. For this reason, poultry diets are often supplemented with mineral P. However, global rock phosphate reserves, where mineral P is mined from, are limited. Additionally, excessive P supply should also be avoided because of the environmental impact of P accumulation in the soil. Consequently, P supply not exceeding the requirements of poultry is essential to ensure animal wellbeing and to protect the environment. In order to feed diets with adequate concentrations of P, it is necessary to have suitable approaches for the determination of available P in the animal. The availability of P varies widely between feed components and it is also influenced by feed supplements and other factors. Bone ash analysis is an often-used tool to evaluate the relative bioavailability of P since a high amount of P is stored in the bones. A standard assay for bone ash analyses has never been agreed on. Therefore, many different approaches are described in the literature with an unknown impact on the results of P bioavailability studies. The main objective of the present thesis was to examine the suitability of bone ash data for the evaluation of available P in poultry with emphasis on methodological aspects. Therefore, different studies with broiler chickens and Japanese quail were conducted. The experiments comprised various aspects related to P availability in poultry. The effect of feed supplements in the form of phytase products, myo-inositol and a coccidiostat were evaluated. Furthermore, quantitative genetic analyses were performed. All experiments had in common that tibiotarsus (tibia) or foot ash data or both were used for the examination of the relative bioavailability of P. Based on the data that accrued during the studies described in the four manuscripts of this thesis, comprehensive methodological analyses were performed. The tibia and foot were compared regarding their appropriateness as a trait for the evaluation of the relative bioavailability of P by using bone ash data. The relationship between the two traits was investigated, as well as the relationship between foot or tibia ash and quantitative P measurements. Additionally, P concentration in the ash of both bone fractions was analysed and compared. Results indicated only minor differences between tibia and foot ash data. No clear preference for one of them could be deduced from the data. The left and right feet of broiler chickens were compared in terms of both ash concentration and total ash amount. Significant differences between the two feet of the same animal were detected for both traits. Consequently, not only the choice of the bone fraction but also of the body side should be considered when sampling for bone ash data. Ash data are mostly expressed as a concentration of the dry matter content of the bone. Also possible is the use of the absolute ash amount. The relationship of both ways of expression with traits of quantitative P measurements was analysed by using correlation coefficients and regression analyses. Results showed that the absolute ash amount was at least as suitable as ash concentration but has the advantage that it is easier to determine. Possible selection procedures for animals for bone ash analyses were simulated with data from two of the experiments. Often it is not possible to use all animals involved in an experiment for bone ash analyses. Therefore, the influence of sampling frequency and selection method on the outcome of P availability studies was evaluated. Results indicated that the number and selection method of animals for bone ash data might influence the results. However, it was not possible to recommend a specific selection method based on the obtained results. Estimates of heritability and genetic correlations showed the suitability of bone ash data as a proxy trait for P efficiency breeding of poultry. The absolute amount of bone ash data appeared to be most promising for this purpose. Bone ash data are a very useful and easy to determine trait to estimate the relative bioavailability of P. However, investigations performed in this thesis showed the importance of a careful selection of methods. A standardised assay would be helpful to obtain meaningful and more comparable estimates of relative P bioavailability.Publication Dissecting the genetic basis of root- and rhizosphere-related phosphorususe efficiency in European elite maize (Zea mays L.) lines and landraces(2021) Li, Xuelian; Ludewig, UweIn agriculture, farmers massively apply P fertilizer to maintain high yield. Due to the long-term high fertilization rates and long-term organic residue accumulation, the total P pool per hectare has increased between 1900 and 2020. Since modern varieties have often been selected in high-nutrient input conditions for high yields, concerns are being raised that the beneficial traits for P uptake under a limited P supply will gradually decline in elite varieties. Regarding to maize (Zea mays L.), thousands of varieties have been bred since it was domesticated as a food product. It is an open question whether traits and genes related to P deficiency in European maize have changed since the Green Revolution, the start of hybrid breeding and high-intensity fertilization. This is the core research question of this dissertation. Here I present the analysis of roots in response to P deficiency using a diverse panel of European maize genotypes via several experiments. In Chapter I, we focus on whether maize seedlings of the flint and dent heterotic pools vary in the P acquisition and utilization since the onset of hybrid breeding using 34 genotypes in mini-rhizotrons. These genotypes included 16 flint lines that were released over more than five decades ago, 7 doubled haploid lines from the flint landraces (DH_LR), 8 dent lines, and 3 hybrids. Seedling P use efficiency (PUE) and related traits were measured and compared at two P levels in a calcareous soil. In Chapter II, we compared the root exudated organic acids and mycorrhizal fungi colonization degree among 24 genotypes which have been evaluated in Chapter I. These genotypes included 16 flint lines, 6 DH_LR and 2 old dent lines. Seedling colonization with arbuscular mycorrhizal fungi (AMF) and organic acid anion release were measured. P-uptake-related root traits were compared under P-sufficient and P-deficient conditions. In Chapter III, using nearly isogenic maize lines, the B73 wild type and the rth3 root hairless mutant, we quantified the effect of root hairs and AMF infection in a calcareous soil under P deficiency. Wild-type root hairs extended the rhizosphere for acid phosphatase activity by 0.5 mm compared with the rth3 hairless mutant. Total root length of the wild type was longer than that of rth3 under P deficiency. Higher AMF colonization and mycorrhiza-induced phosphate transporter gene expression were identified in the mutant under P deficiency, but plant growth and P acquisition were similar between mutant and the wild type. The mycorrhizal dependency of maize was 33 % higher than the root hair dependency. Root hairs and AMF inoculation are two alternative ways to increase Pi acquisition under P deficiency, but these two strategies compete with each other. In Chapter IV again two nearly isogenic maize lines, the B73 wild type and the rth2 root hairless mutant, were used to address the importance of root hairs during drought and under P deficiency. The results indicate that drought and P deficiency synergistically impair maize growth; while P concentrations were little affected by the loss of root hairs, the P content was massively reduced at combined stress, showing that P deficiency is much more severe under drought. In Chapter V, we first compared the root traits response to low P and high P of six preselected genotypes in European flint in Chapter I. We then generated RNA libraries from the roots of these lines under both low P and high P. Using an expressed genes matrix, we conducted a Weighted Genomic Coexpression Network Analysis (WGCNA), and detected general low P-induced modules and modules that were higher in founder flints. The P deficiency-responsive metabolic processes common to all six genotypes included: (1) acceleration of carbon supply for organic acid synthesis through glycolysis and TCA cycle; (2) alteration of lipid metabolism; (3) changes of activity of transmembrane transporters; (4) carotenoid metabolism. Additionally, the founder flint line EP1, F2 and doubled haploid landrace SM1 have their specific strategies and mechanism to cope with low P. Our findings well support other studies with transcriptome, proteome and metabolome experiments in maize and other species, and point to molecular events involved in the efficient alleviation of P stress in efficient maize accessions. Altogether, this study presents informative analyses in how maize genotypes with distinct breeding history adapt to P deficiency in regard of root, rhizosphere traits and root transcription. It showed correlation between phenotypic traits and gene transcription, which is much more complex than previously reported. It also opened a novel insight into molecular regulation on Pi utilization, resulting in promotion of vegetative biomass in P deficiency. These findings will also provide precious knowledge for plant breeders and agronomists who work on P research in maize and other cereal crops.Publication Effects of a reduction of dietary levels of calcium and phosphorus on performance, bone minerals and mineral excretion of turkey breeder hens in the rearing and laying period(2023) Gickel, Julia Maria; Rodehutscord, MarkusPhosphorus (P) is an essential mineral in feed for livestock and has finite resources all over the world. The aim of this study was to obtain an idea about the reduction potential of P in the diets of turkey breeders. As the metabolism of P is interlinked with the metabolism of calcium (Ca), Ca was also examined. Therefore, the requirements of P and Ca were studied using a factorial approach. As data about the requirements of these minerals in turkey breeders is limited, the present study mostly used data from other poultry species. Thus, this study can be viewed as an approach to building new resilient data for turkey breeder hens. The results of the factorial approach were embedded in a feeding program for turkey breeder hens during rearing and laying with two different treatments. One group was fed a standard feed (practical diet used before the trial), while the other group was fed a Ca/P reduced feed. In total, four trials were conducted: trials I and III focused on the rearing period while trials II and IV focused on the laying period. All trials were observed independently but the hens from trial I were used also in trial II afterwards for studying long-term effects. In each trial, body weight and feed intake were measured throughout the trial period. Bone mineralization was studied in trial I, including analyses of bone ash as well as Ca and P in the bone ash from the tibia of fallen and culled animals. The egg components were studied in eggs from trial II, including analyses of the percentages of albumen, egg yolk, and egg shell; Ca in albumen; P in albumen; Ca in egg yolk; P in egg yolk; water in egg shell; Ca in egg shell; and P in egg shell. In trials II and IV, laying performance, egg weights, number (and causes) of culled eggs, fertility, hatchability, as well as body weight and fitness of the hatchlings were additionally observed. At the end of each trial, the concentrations of dry matter, Ca, and P in manure were analyzed and a nutrient balance was calculated to classify the results. Body weight development exhibited significant differences between the treatments in eight out of 30 weeks in trial I (five weeks had a higher mean weight in the group with standard feed; three weeks had a higher mean weight in the group with Ca/P reduced feed); three out of 28 weeks in trial II (two weeks had a higher mean weight in group with Ca/P reduced feed; one week had a higher mean weight in the group with standard feed); four out of 30 weeks in trial III (higher mean weight in the group with Ca/P reduced feed); and two weeks out of 28 in trial IV (higher mean weight in the group with Ca/P reduced feed). The feed intake data also fluctuated, with three out of 30 weeks exhibiting a significant difference in trial I (higher mean feed intake in the group with Ca/P reduced feed) and one week with a significant difference in trial II (higher mean feed intake in the group with standard feed). The observations throughout all of the trials revealed the tendency for a higher mean feed intake in the groups with Ca/P reduced feed. A significant difference concerning bone mineralization was not observed. Moreover, the results of laying performance, fertility, and hatchability exhibited no differences between the treatments. Regarding the egg weight in trial II, there were eight weeks with a significant difference between the treatments (seven weeks with a higher mean egg weight in the group with standard feed; one week with a higher mean egg weight in the group with Ca/P reduced feed). In trial IV, only one week exhibited a significant difference between the treatments (higher mean egg weight in the group with Ca/P reduced feed). Regarding the weight of hatchlings in trial II, three weeks had a significant difference between the groups (higher mean weight in the group with standard feed). In trial IV, no significant difference was observed for any week all throughout the trial period. The analyses of egg components revealed significant differences between the treatments according to the percentages of albumen and egg yolk and the calculated value of total Ca in the egg (including the shell). In trials I and III, significant differences existed between the treatments in the concentration of Ca in manure, with a lower level in the group with Ca/P reduced feed. This study concluded that a reduction in the dietary levels of Ca from 1.00–1.10% to 0.56–0.80% and of P from 0.48–0.61% to 0.35–0.50% (av. P) or 0.70–0.80% to 0.50–0.60% (total P) in rearing and a reduction of the dietary levels of Ca from 2.90% to 2.80% or 2.60% and of P from 0.36% to 0.30% or 0.24% (av. P) or from 0.65% to 0.50% (total P) in laying in the feed of turkey breeder hens are possible and did not result in disadvantages. As the present study also compared the results with required recommendations and target levels from breeding companies, it was also able to conclude that these levels are obsolete and should be adjusted downwards.Publication Effects of diets with different phosporus availability on the intestinal microbiota of chickens and pigs(2019) Tilocca, Bruno; Seifert, JanaIn the research works of the present thesis, 16S rRNA gene sequencing and metaproteomics were employed to investigate the gut microbiota of chickens and pigs kept at experimental diets with varying amount of calcium-phosphorus (CaP) and supplemented MP. This represents a valuable approach to investigate the bacterial specimens involved in the P absorption, allowing for a comprehensive understanding of how the intestinal bacteria adapt to a new diet and which metabolic routes are affected by changing levels of supplemented P and/or MP. Two major experimental trials were performed during the investigation. The first one was conducted on chickens operating a modulation in the dietary levels of Ca, P and MP. This trial highlighted a shift in the composition of the crop and ceca-associated microbial community depending on the composition of the diet fed. Also, investigated protein inventory revealed that the stress condition due to the reduced P availability is mirrored in the gastrointestinal tract (GIT)-associated microbiota. Marked differences were observed in the functions of the bacterial community in the case of P-available diets versus P-deficient ones. Protein repertoire of the first case draws a thriving microbial community focused on complex and anabolic functions. Contrariwise, the bacterial community in the case of P-lacking diets appears to deal with catabolic functions and stress response. The second trial was conducted on pigs and attempts to define the dynamics featuring the microbiota adaptation to a new challenging diet composed of different protein sources and varying levels of Ca and P. Statistical evidences reveal a stepwise adaptation of the fecal microbiota to the experimental diets fed. Both DNA-based approach and metaproteomics independently reveal three main adaptation phases: -before the feeding of the experimental trial (i.e. Zero), -the response of the microbial community to the challenging factor (i.e. MA) and, finally, - the newly achieved homeostatic balance (i.e. EQ). As observed in the first trial, feeding of the experimental diets impairs the overall fecal microbiota composition, stimulating the presence of phase-specific bacterial specimens and a characteristic relative abundance of the shared ones. Bacterial families responsible for the phase-specific architecture of the fecal microbiota are also active in the biochemical pathways driving the functional peculiarities of each adaptation phase. A deeper investigation of the identified protein repertoire revealed that the observed statistical differences among the adaptation phases are uniquely due to the Ca and P composition of the diets fed. None of the observed effects can be attributed to the diverse protein sources supplemented with the diets. Functional categorization of the identified protein inventory depicts three diverse functional assets of the microbial community. Specifically, prior the feeding of the experimental diets, bacteria are hypothesized to live under homeostatic condition, since they appear to be involved in complex and highly-specialized functions. Following the administration of the experimental diets microbial community changes its functional priority and reduce the expression of highly specialized functions to focus on more essential ones. Proteins involved in complex functions such as widening the substrates array and facing complex sugars tend to increase in abundance while the new homeostatic balance is achieved. Altogether, data from both trials provide useful information for future studies aimed to design effective breeding strategies finalized to reduce the P supplementation in the routinely breeding of livestock and maintain a balanced microbial activity in the animal GIT. Investigation of the dynamics of the porcine microbiota provides instructions on the minimal exposure time required from the intestinal microbiota to adapt to a new dietary composition. This is of fundamental importance for the design of future studies aimed to confirm and/or continue our results. Moreover, the anatomical and physiological similarities occurring between humans and pigs, make our findings of interest for future human nutritional studies, where the mechanisms and lasts of the microbiota adaptation process is still object of discussion.Publication Evaluation of the availability of different mineral phosphorus sources in broilers(2012) Shastak, Yauheni; Rodehutscord, MarkusInorganic feed phosphates are an indispensable supplement for compounding poultry feed. The requirement of available P in broiler chicks cannot be covered only with plant ingredients as P in plant feedstuff is largely presented in form of phytate which is only partially available in avian species. Due to the increase in prices for feed phosphates and environmental concerns associated with excessive excretion of P by livestock, the knowledge about the availability of P from mineral sources has gained in importance during the last decade. However, there is still no standardized method available for assessing the P availability of inorganic feed phosphates. Without knowledge of the exact quantitative values of the P availability for different P sources, it is not possible to formulate adequate diets without the risk of deficiency or excess supplementation. There are various approaches which are used by different laboratories for the determination of P availability. The main problem is, however, that it is not clear how the differences between approaches affect the results. The development of a standardized method of P evaluation, which allows obtaining quantitative values for P availability, is the basis for optimizing the dietary P concentration in broiler diets. The major objective of this thesis was to compare various methodological approaches that are used internationally to determine P availability in terms of their suitability. Therefore, firstly the P availability of two mineral phosphates was determined in 3- and 5-wk-old broilers based on data for P retention and prececal digestibility. The P availability of both mineral sources was calculated for both ages of birds by regression analyses for comparison of both response criteria. Secondly, the tibia bone ash and other bone criteria were determined. A comparison of these bone response criteria was then carried out by relating these data to measurements made on P retention. Thirdly, the suitability of tibia P retention for the estimation of the whole body P retention was investigated at both ages of birds. Variation in P retention of birds in these studies was additionally caused by the level and the source of P in the diet. In a fourth study, the effect of the basal diet composition on the availability of a feed phosphate was investigated based on quantitative P retention. A phytin-containing corn-SBM-based as well as a purified basal diet was used. Moreover, the impact of the inorganic phosphate level on the IP6 hydrolysis of the corn-SBM-based diet was assessed on the basis of excreta collection. In the first study, a corn-SBM-based basal diet was used (0.35% P on dry matter basis). MSPa or DCPa was supplemented to increment the P concentration by 0.08%, 0.16%, and 0.24%. Two balance trials (n=8 birds per diet) and two digestibility trials (n=8 pens with 10 birds per diet) were conducted (8 treatments per diet). In 3-wk-old broilers, P retention for MSPa was 70% and significantly higher (P < 0.001) than for DCPa (29%), as calculated by linear regression analysis. Values determined for P pc digestibility at the same age were very similar (67% for MSPa and 30% for DCPa; P < 0.001). In 5-wk-old broilers, P retention was 63% (MSPa) and 29% (DCPa) (P < 0.001), and pc digestibility was 54% (MSPa) and 25% (DCPa) (P = 0.002). In conclusion, in 3-wk-old broilers results obtained with both approaches were the same. In 5-wk-old broilers, the ranking of the two P sources was the same for both approaches. Values differed not greatly between the two age periods. The second study was linked to the first one, and the experimental design was the same. The study comprised two periods with birds of different ages, but from the same hatch. The response criteria evaluated were tibia, tarsometatarsus, toe ash, and P, as well as the Quantitative Computed Tomography measurements of tibiae, blood Pi concentration, and body weight gain. Responses were evaluated and compared based on linear regression analysis. In general, MSPa had a greater slope than DCPa for all criteria studied. For the different bones, the ratio of slopes was very similar based on the amount of ash in both periods. Foot ash was proved to be as sensitive as tibia ash in both periods. Blood serum Pi and body weight gain were not sufficiently sensitive criteria for P evaluation. We concluded that the ranking of both mineral P sources based on bone criteria differed from the ranking that was based on P retention or pc digestibility. The third study was also linked to the first one. Thus, the experimental design was the same. On days 21 and 35, two chicks per treatment were randomly chosen. Contents of P and Ca were determined in tibiae-free bodies and tibiae. The whole body P to tibia P ratio was 21.3±1.3 at d 21 and 19.8±1.1 at d 35 of age. The slope of linear regressions between the tibia P and the whole body P for both ages was identical (17.7). Results indicated that changes in tibia P may be suitable to predict changes in whole body P retention. In the last experiment, a phytin-containing as well as a purified basal diet, both containing 1.8 g available P per kg feed dry matter, was supplemented with MSPa to increment the P concentration by 0.05%, 0.1%, and 0.15%. A retention trial with excreta collection from d 20-24 was conducted (n=7 birds per diet). The level of P did not significantly affect the total P retention either of the corn-SBM-based or of the purified basal diet (P > 0.05). However, increasing the P level significantly reduced (P = 0.015) the IP6 hydrolysis for the corn-SBM-based diets. Percentage P retention for MSPa was calculated by linear regression analysis. P retention for MSPa was 50% for the corn-SBM-based diet and 51% for the purified diet. We concluded that there was no difference in P retention from MSPa between corn-SBM-based and purified diets. It can be concluded from the results of the present thesis that both retention and pc digestibility can be used for evaluating mineral P sources in broilers based on a regression approach. The ranking of mineral P sources based on bone criteria differed from the ranking that was based on P retention or pc digestibility. There was no difference in P retention from MSPa between corn-SBM-based and purified based diets, but a significant effect of the P-level on the IP6 hydrolysis in corn-SBM-based basal diets was found.Publication Fertilization strategies to improve the plant growth-promoting potential of microbial bio-effectors(2020) Mpanga Kwadwo, Isaac; Neumann, GünterThe use of plant growth-promoting microorganisms (PGPMs) as inoculants to support nutrient acquisition of crops is discussed as a promising strategy for improving fertilizer use efficiency, to enable crop production with less input of fertilizers, and to reduce detrimental environmental side effects related with high inputs of mineral fertilizers. However, the efficiency of PGPM-assisted cropping systems is still biased by the limited reproducibility of the expected effects under real production conditions. This can be attributed to the sensitivity of plant-PGPM interactions to environmental stress factors particularly during the phase of establishment and to limited knowledge on positive or negative interactions with the native soil microbiome and the application conditions required for successful rhizosphere colonization as a pre-requisite for beneficial plant PGPM interactions. This study demonstrated that the combination with compatible fertilizers offers an option to promote the establishment of PGPM effects as a potential management option to improve the performance of PGPM-assisted production strategies. In a range of model experiments with maize with a limited inherent potential for root-induced P-solubilization, it was demonstrated that the acquisition of sparingly soluble Ca-phosphates could be synergistically improved by a combination of PGPM inoculants with ammonium fertilizers, stabilized with nitrification inhibitors (Chapter 4). The effect was demonstrated for PGPMs based on 15 different fungal (genus: Trichoderma, Penicillium) and bacterial (genus: Bacillus, Paenibacillus, Pseudomonas, Streptomyces) strains and strain combinations, which were largely ineffective in combination with nitrate fertilization. On average over all experiments, the PGPM-ammonium combinations with sparingly soluble Ca-P supply reached about 84% of the shoot biomass production and 80% of the shoot P accumulation as compared with positive controls fertilized with soluble P. The soil pH-buffering capacity, particularly on neutral to alkaline soils, was identified as a limiting factor, counteracting the plant growth-promoting potential of the selected inoculants with a proven ability for Ca-P solubilization on artificial growth media. Accordingly, plants supplied with nitrate fertilization were severely P deficient and the weak host plants were unable to establish a functional association with the microbial inoculants. By contrast, stabilized ammonium fertilization triggered root extrusion of protons for charge balance of ammonium uptake, associated with rhizosphere acidification, contributing to P solubilization. This increased the P-nutritional status and vitality of the host plants, which enabled the establishment of PGPMs in the rhizosphere. Interestingly in this scenario, the contribution of the PGPM inoculants to plant P acquisition was only marginally expressed but the PGPMs stimulated root development, contributing to an improved nutrient acquisition in general (Chapter 4.1). A closer look on the related modes of action (Chapter 4.2) revealed that ammonium fertilization stimulated the production of auxin as a key regulator for root growth, both, by the bacterial inoculants and by the roots of the host plants. While ammonium supply without PGPM inoculants had no effects on total root length, the length of the root hairs and the diameter of rhizosheaths formed by root hair-adhering soil was increased, leading to an extension of the root surface area involved in rhizosphere acidification and spatial acquisition of nutrients. Moreover, root hairs have been reported as preferential infection sites for various inoculants investigated in this study, and accordingly increased root colonization of the fungal inoculant Trichoderma harzianum OMG16 was recorded in combination with ammonium fertilization. By contrast, there was no evidence for increased organic acid production or a contribution of the inoculants to the acquisition of organic P sources by the release of phosphohydrolases in the investigated strains. Increased rhizosphere acidification after PGPM inoculation in combination with ammonium fertilization was observed exceptionally only in one experiment conducted on a moderately acidic sandy soil with a low buffering capacity. However, soil pH was identified as a critical factor determining the expression of the synergistic PGPM-ammonium effects on Ca-P solubilization, which declined with increasing soil pH (Chapter 4.3). Highly-buffered calcareous soils counteracted ammonium-induced rhizosphere acidification and P mobilization as a pre-requisite for PGPM-establishment in the rhizosphere. Under these conditions, successful experiments with applications of granulated fertilizers, based on stabilized di-ammonium phosphate and PGPM inoculants, suggest that placement of starter fertilizers leading to a more concentrated ammonium effect may offer an option to overcome this problem. First field experiments suggested that beneficial effects of ammonium-assisted PGPM inoculation on P acquisition can be expected particularly on soils with low P availability and the approach was patented in 2018. As a second approach, the combination of PGPMs with fertilizers based on products of organic waste recycling, such as municipal waste compost or composted poultry manure (PM compost), applied with the same P dose, were investigated with tomato as model plant on low P soils with contrasting pH in Ghana (Chapter 5). Interestingly, on both soils, PGPM inoculation increased the P use efficiency and early plant growth only in the combination of compost with PM but not with sole compost application. Additional supplementation with ammonium on the moderately acidic soil increased plant biomass production in PGPM inoculated plants to the same level as soluble superphosphate fertilization. Similar to the ammonium-PGPM combinations, root growth stimulation was a major PGPM effect, which improved nutrient acquisition in general. Large-scale greenhouse and open-field tomato production trials conducted in Romania and Hungary revealed reproducible effects on yield and fruit quality over three years by PGPM combinations with manure-based fertilizers (Chapter 6). Taken together, the thesis demonstrated that the selection of compatible combinations of fertilizers and PGPM inoculants is an essential factor for the successful establishment of beneficial plant-PGPM interactions in the rhizosphere. Combinations with stabilized ammonium fertilizers or with products based on organic waste recycling, such as composted manures, have been identified as two promising examples with potential for the development of PGPM-assisted production systems.Publication Heavy metals from phosphate fertilizers in maize-based food-feed energy systems(2023) Niño Savala, Andrea Giovanna; Fangmeier, AndreasThe problem of polluted agricultural lands with heavy metals due to anthropogenic activities, including applying phosphorous (P) fertilizers polluted with cadmium (Cd) and other metal such as uranium, has been extensively studied. Several reviews, including the one in the present dissertation, have elaborated this issue with often the same results: the application of P fertilizers with high Cd levels is strongly correlated to Cd accumulation in arable soil, which could imply environmental risks as well as health risks for humans and animals through the food chain. Therefore, these reviews have often the same conclusion: the application of low Cd-P fertilizers, either mineral, organic or recycled, is diminishing the risks of Cd pollution at the soil, crop and consumption level. However, globalization, trade politics, economy, dependency on Morocco mineral P fertilizers, and the finite stock in the raw material have challenged this possibility, especially in the European Union. Meanwhile, in China, polluted arable soils are related to other anthropogenic activities and type of fertilizers rather than Cd-polluted phosphate rock and mineral P fertilizers. At the farm level, other options to diminish Cd pollution in soil and crops, besides low Cd-P fertilizers, could consist of different fertilizer and crop management. These options were studied in this dissertation. A different P management, including different rate applications and placements, did not influence the total Cd concentration in silage maize grown in Germany, regardless of the developmental stage of the crop and the Cd levels in P fertilizer. Silage maize might take up Cd derived from P fertilizers under unpolluted soils, without high risks due to its high biomass production. However, significant changes in the labile Cd fraction were already visible after applying Cd-polluted P fertilizers at 150% of the required amount to the soil after only two growing seasons. Further research should be done to understand the correlations between the bioavailable metal fraction and the actual Cd uptake by silage maize, especially in unpolluted soils. This recommendation also follows the meta- analysis results presented in the second publication, which indicated a possible bias as most of the studies are performed under polluted conditions. Considering the results of the third and fourth publication, the Cd uptake by silage maize was strongly correlated to labile Zn in the soil and the Zn uptake at the early development stage after two field seasons. Placed P fertilizer had a significant and negative effect on the Zn uptake by young silage maize. Further research is needed to understand the behavior of Cd and Zn in the uptake process by maize under P fertilization in unpolluted soils. According to three of the four publications presented in this dissertation, the soil pH was the main soil characteristic influencing the bioavailability and the plant uptake of Cd under unpolluted conditions, regardless of the P treatment, the development stage, and the maizes intended use. However, the total Cd concentration in the soil was the dominant variable for the Cd concentration in maize grain when the soil was polluted with high Cd levels, which was the case in several experiments analyzed in the second publication. P fertilizers with average Cd contamination might enhance labile Cd accumulation in arable land and crops when applied to low biomass crops, such as wheat and legume crops. In this regard, crop management such as crop rotation in the central field experiment indicated that the wheat rotation induced a lower Cd accumulation in maize-soil systems, owing to wheat likely accumulating Cd at higher levels than other crops. The results presented in the second publication also indicated high Cd accumulation by the wheat crop: the wheat grain accumulated more Cd than the maize grain. Thus, potential hazards related to Cd accumulation in wheat grain should also be considered in wheat-maize systems. In conclusion, suitable crop rotations considering the crop-specific potential of Cd accumulation, efficient P management including soil P levels and nutrient use efficiency, and low Cd-P fertilizers remain the most viable options and the main challenge to avoid Cd accumulation in arable soils.Publication Hidden miners – the roles of cover crops and soil microorganisms in phosphorus cycling through agroecosystems(2019) Hallama, Moritz; Pekrun, Carola; Lambers, Hans; Kandeler, EllenBackground Phosphorus (P) is a limiting nutrient in many agroecosystems and costly fertilizer inputs can cause negative environmental impacts. Cover crops constitute a promising management option for sustainable intensification of agriculture. However, their interactions with the soil microbial community, which is a key driver of P cycling, and their effects on the following crop, have not yet been systematically assessed. Scope We conducted a meta-analysis of published field studies on cover crops and P cycling, focusing on plant-microbe interactions. Conclusions We describe several distinct, simultaneous mechanisms of P benefits for the main crop. Decomposition dynamics, governed by P concentration, are critical for the transfer of P from cover crop residues to the main crop. Cover crops may enhance the soil microbial community by providing a legacy of increased mycorrhizal abundance, microbial biomass P, and phosphatase activity. Cover crops are generally most effective in systems low in available P, and may access ‘unavailable’ P pools. However, their effects on P availability are difficult to detect by standard soil P tests, except for increases after the use of Lupinus sp. Agricultural management (i.e. cover crop species selection, tillage, fertilization) can improve cover crop effects. In summary, cover cropping has the potential to tighten nutrient cycling in agricultural systems under different conditions, increasing crop P nutrition and yield.Publication Identification of regulatory factors determining nutrient acquisition in Arabidopsis(2011) Giehl, Ricardo Fabiano Hettwer; von Wirén, NicolausThe acquisition and translocation of mineral nutrients involves the orchestrated action of a series of physiological and biochemical mechanisms, which are, in turn, regulated by nutrient availability and demand. Furthermore, root morphological changes play an outstanding role for nutrient acquisition, especially when the availability of a certain nutrient is low. Although for most nutrients the molecular mechanisms involved in their acquisition from soils have been described, much less is known about the regulatory pathways underlying the uptake and translocation of nutrients in plants. Thus, the main aim of the present study was to characterize root morphological responses to nutrient supply and to identify novel regulatory components. The first part of the present thesis describes the morphological response of Arabidopsis roots to the essential element iron (Fe), which has a particularly low solubility in soils. Relative to a homogenous supply of Fe, localized Fe supply to horizontally-separated agar plates doubled lateral root length without a particular effect on lateral root number. The internal tissue Fe rather than external Fe triggered the local elongation of lateral roots. In addition, the Fe-stimulated emergence of lateral root primordia and root cell elongation was accompanied by a higher activity of the auxin reporter DR5:GUS in lateral root apices. A crucial role of the auxin transporter AUX1 in Fe-triggered lateral root elongation was indicated by Fe-regulated AUX1 promoter activities in lateral root apices and by the failure of aux-1 mutants to elongate lateral roots into Fe-enriched agar patches. Furthermore, a screening was designed to identify novel regulatory components involved in the Fe-dependent stimulation of lateral roots. One member of the GATA family of transcription factors was found to play a role in the local, root-endogenous regulation of lateral root development in response to local supplies of Fe. It was concluded that a Fe sensing mechanism in roots regulates lateral root development by modulating auxin transport. The second part of the thesis describes the use of multi-elemental analyses to identify novel regulators of nutrient accumulation in Arabidopsis. Firstly, it is shown that the disruption of transcription factors expression can lead to significant alterations in the accumulation of one or more nutrients in shoots. In addition, this approach allowed the identification of a so-far uncharacterized transcription factor ? NGAL1 ? that regulates primary root elongation in response to phosphorus (P) supply. The loss of NGAL1 resulted in hypersensitive inhibition of primary root growth under low P and a P-independent increase in lateral root elongation. The results presented here indicate that NGAL1 participates in a signaling pathway that modulates meristematic activity by controlling the expression of important root patterning regulators according to the local availability of P.Publication Impact of dietary phosphorus and fermentable substrates on the immune system and the intestinal microbiota of the pig(2016) Heyer, Charlotte Maria Elisabeth; Stefanski, VolkerPhosphorus (P) represents a crucial input for agriculture and food industries as a mineral present in ingredients used for livestock feeding as well as in mineral fertilisers. In the current systems, P is primarily derived from the finite mined phosphate rock resource. Thus, a critical challenge of global P scarcity is directly linked to future food security and sustainable resource management, especially in the European Union which is dependent on raw P from outside Europe. Apart from other future activities in animal nutrition, new dietary formulations of livestock diets emerged as a potential approach to increase the digestibility of plant P, phytate (myo inositol 1,2,3,4,5,6 hexakisphosphate, InsP6), and to reduce the supplementation with mineral phosphate. In non-ruminant animals, such as the pig, InsP6 hydrolysis is incomplete, as the small intestine lacks sufficient enzymes such as endogenous mucosal phytase and phosphatase. As a consequence, there is rising scientific interest to improve the understanding of InsP6 degradation in the digestive tract as well as the effects on nutritional factors and finally animal performance and health. The aim of the present thesis was to investigate the impact of dietary P, InsP6 and InsP6 hydrolysis products in combination with different fermentable substances (protein, carbohydrate) on the porcine immune system, the intestinal microbiota and animal health. First, a comprehensive literature overview describes the impact of P on the immune system and the microbiota along the gastrointestinal tract (GIT), including potential effects on host health with special focus on the pig. Secondly, an in vivo study with growing pigs was conducted to examine the effects of diets with varying mineral calcium-phosphorus (CaP) levels as well as different fermentable substrates on intestinal CaP concentration, InsP6 hydrolysis, the intestinal microbial ecosystem, and the peripheral and gut-associated immune system. In 2 consecutive experiments, 31 growing pigs (55 ± 4 kg) were allotted to a 2 × 2 factorial arrangement with 4 treatment groups, fed either a corn-soybean meal or a corn-pea based diet, each with 2 different CaP levels (low, 66% of the CaP requirement; high, 120% of the CaP requirement) supplemented with monocalcium phosphate and calcium carbonate. After 3 weeks of adaptation to the diets, all pigs were immunized twice with keyhole limpet hemocyanin (KLH). Blood and faeces samples were taken. After slaughtering, immunological tissue (jejunal, ileal mesenteric lymph nodes, spleen) as well as jejunal, ileal, caecal and colonic digesta were taken. Faecal and digesta samples were examined for P, Ca, inositol phosphate (InsP) isomers and for the marker titanium dioxide. The number of different leukocyte subpopulations analysed by flow cytometry, mitogen-induced lymphocytes proliferation in vitro were assessed. In addition, concentrations of plasma anti KLH IgM and plasma anti-KLH IgG analysed by ELISA and haematological parameters analysed by an automated hematology system have been measured in blood and tissue samples. In digesta samples, bacterial 16S rRNA gene copy numbers were determined by quantitative real-time PCR. The concentration of short chain fatty acids (SCFA) and ammonia was assessed. In addition, the use of terminal restriction fragment length polymorphism has been proven to characterize the structure of porcine gut microbiota. Results of the current study demonstrated that CaP and fermentable substrates had a distinct effect on the peripheral and gut-associated immune system, as well as on microbial composition and activity in growing pigs. High dietary CaP concentrations and the corn-pea diets increased P net absorption. Almost no InsP6 degradation could be observed in the GIT, and mainly myo inositol pentakisphosphate (InsP5) isomers were measured in jejunal, caecal digesta and faecal samples. In particular, the high CaP diets showed higher InsP6 and InsP5 concentrations, indicating a reduction of the initial steps of P release from InsP6 and a further breakdown of InsP5 isomers. The low CaP content might cause an impaired first line of defence and activation of the cellular and humoral adaptive immune response. As an example, the high CaP content affected the outcome of the adaptive immune response including a higher number of antigen experienced T-helper cells in the blood as well as higher plasma anti-KLH IgG concentrations. The reactivity of blood and mesenteric lymph node lymphocytes to Concanavalin A in these pigs was impaired, indicating modulating effects of other origin such as migration patterns or activity of antigen-presenting cells. Since results of the present study suggest contradictory effects of CaP level on immune cell numbers and lymphocyte reactivity in vitro and in vivo, further studies are needed to determine effects on cell signalling such as cytokine production profiles. Moreover, the high CaP content and the soybean meal diets increased the number of butyrate-producing bacteria, such as Eubacterium rectale and Roseburia spp. and increased the concentration of various SCFA in the small and large intestine, thereby contributing to improve gut health. Potentially harmful bacteria, such as Enterobacteriaceae and Bacteroides Prevotella Porphyromonas, were increased by the low CaP level and pea diets, indicating a less healthy microbiota. Results demonstrated that both, CaP supply and the amount of fermentable substrates, may beneficially affect gut health due to modulations of the composition and activity of the intestinal microbiota. Further studies should evaluate the impact of CaP on specific pathogenic bacteria known to produce toxic products creating a direct link to the immune system and animal health. Although most parameters of the present study indicate a positive effect of the high CaP diet, not all values showed a consistent effect on animal health, such as immune cell numbers and lymphocyte proliferation in vitro. In conclusion, variations in P availability and the formation of individual InsPs have to be considered when formulating diets in support of a stable intestinal microbial ecosystem and immune functions of the host.Publication Managing crop health by mineral nitrogen fertilization and use of different chemical nitrogen forms(2023) Maywald, Niels Julian; Ludewig, UweMaintaining plant health is one of the most difficult but crucial challenges in crop production to realize plants’ full genetic potential. It is lowered by a variety of abiotic and biotic stresses that are becoming more severe and unpredictable due to climate change and its consequences. In addition, the use of chemical synthetic pesticides is increasingly criticized for endangering sensitive natural resources and possible pesticide residues in food and environment. Avoiding or reducing the use of chemical synthetic plant protection products makes the control of phytopathogenic pests even more difficult. Therefore, in addition to optimizing various management measures such as tillage, sowing time, row spacing or crop rotation, mineral nitrogen (N) fertilization and the targeted application of N forms must be utilized to reduce abiotic stress factors and the infestation pressure of certain pests to ensure high yield performance. Consequently, several experiments were conducted to better understand how mineral nitrogen fertilization and forms can improve plant health by increasing plant resistance to abiotic stressors, particularly repeated drought stress and nutrient (P) deficiency, and to biotic stressors, such as relevant phytopathogenic fungi. It was found that with respect to repeated drought stress, maize plants receiving supplemental nitrogen during the recovery period after an early drought stress were better able to cope with late drought stress. In this context, N fertilization could help the plant to maintain its photosynthetic activity under drought stress. Additionally, plants repeatedly exposed to drought stress recovered faster with N fertilization due to transiently higher antioxidant levels and higher production of reactive oxygen species. A further experiment revealed that depending on the maize genotype, ammonium as a form of nitrogen has a positive effect on the availability and uptake of phosphorus compared to nitrate, depending on the maize genotype. This observation could be attributed not only to the acidifying effect on the pH of the rhizosphere, but also to the increased abundance of various phosphorus-solubilizing bacteria and arbuscular mycorrhizal fungi under ammonium nutrition. Together this could provide an enhanced P availability, which ultimately reduces plant stress and improves physiologically resistance leading to a reduction in disease risk. Nevertheless, studies revealed that high N fertilization in most cases promotes disease attack and makes the plant more susceptible to pathogens. Scrutinization of this observation indicated that N fertilization enhances infestations of biotrophic pathogens, especially in wheat, while necrotrophic fungi were attenuated. Overall, the complex relationship between plant pathogens and nitrogen nutrition appears to be highly variable due to dynamic factors such as the soil, microorganisms in the rhizosphere, environmental factors, and the host plant, making it difficult to give definite statements about the effects of nitrogen nutrition on pathogen occurrence. Thus, the form of nitrogen could be a promising way to target nitrogen fertilization against individual pathogens. With regards to the previous research, experiments on the influence of N form on pathogen infection, revealed that wheat leaves inoculated with the foliar pathogen Blumeria graminis f. sp. tritici (Bgt) were comparatively less infested when fertilized with nitrate or cyanamide compared to ammonium. After contact with the pathogen, an enhanced defense response in form of increased production of protective substances, indicated by increased concentrations of hydrogen peroxide and superoxide dismutase, and increased antioxidant potential, was detected. Further, it was observed that ammonium fertilization resulted in lower bacterial richness in the plant rhizosphere and higher fungal richness compared to nitrate supplementation. Additionally, a pronounced effect of ammonium fertilization on rootcolonization by important fungal pathogens such as Gaeumannomyces graminis var. tritici (Ggt) and Bgt was found. Regarding the experiment with maize under low P conditions, it appears that ammonium is able to promote both pathogenic and beneficial fungi in cereal crops. Thus, nitrate fertilization appears not only to suppress the occurrence of fungi, but may also promote pathogen-antagonistic bacteria, which in turn have a positive effect on fungal disease suppression.Publication Microbial consortia as inoculants for improvedcrop performance(2020) Bradácová, Klára; Neumann, GünterThe use of microbial consortia products (MCP) based on combinations of different strains of plant growth-promoting microorganisms (PGPM) and frequently also on non-microbial bio-stimulants (BS) with complementary beneficial properties, is discussed as a strategy to increase the efficiency and the flexibility of BS-based crop production strategies under variable environmental conditions. Moreover, MCP application aims at the restoration of plant-beneficial, soil biological processes disturbed by soil degradation and intensive use of agro-chemicals. This PhD thesis was initiated to characterize the modes of action and the potential advantages of a representative commercial MCP formulation over selected single strain PGPM inoculants, with documented effects on plant growth promotion and pathogen suppression. In total, nine pot and field experiments were conducted with three crops (maize, spring wheat, tomato) on seven different soils with three organic and inorganic fertilization regimes. Only in one out of nine experiments conducted in this thesis, clear evidence for superior MCP performance was detectable in a drip-irrigated tomato field experiment conducted under the challenging environmental conditions of the Negev desert in Israel (Bradáčová et al., 2019c). This finding demonstrates that MCP inoculants can exhibit an advantage over single strain inoculants but not as a general feature. Selective interactions with the type and dosage of the selected fertilizers, as well as avoidance of inhibitory effects on root growth during MCP rhizosphere establishment, have been identified as critical factors. A further characterization of the conditions, promoting beneficial plant-MCP interactions is mandatory for a more targeted and reproducible MCP application.Publication Nutritional evaluation of oilseed press cakes in fish nutrition with emphasis on rainbow trout (Oncorhynchus mykiss, W.)(2019) Greiling, Alexander Michael; Rodehutscord, MarkusFishmeal is a valuable, protein rich ingredient for fish feed. It is a source of highly digestible crude protein (CP) with a balanced amino acid (AA) profile, well digestible inorganic phosphorus (P), and a highly digestible energy content. However, its availability is decreasing owing to an increasing demand that is driven by the increased production of fish in feed-based production systems. Research has made great advances in counteracting the limited supply of fishmeal. As a result, the majority of dietary CP in fish feed is made available from oilseeds and their processed by-products. Despite the pre-existing research efforts, the continuous evaluation of feed ingredients in search for alternatives to fishmeal is key to facilitate a sustainable growth of feed-based fish production. Oilseed press cake represents a widely available source of CP. While numerous studies have evaluated the nutritional value of press cake in fish feed, the majority focused on species reared in warmwater production systems. Thus, the objective of this thesis was to add to pre-existing knowledge on press cake and its potential to replace fishmeal in fish feed, with special emphasis on rainbow trout (Oncorhynchus mykiss W.). Initially the nutrient digestibility of various press cakes (linseed, pumpkin seed, rapeseed, soybean, sunflower seed, and walnut kernel cake) was determined in rainbow trout. The press cakes differed greatly in their digestibility of crude nutrients, with CP digestibility ranging from as low as 25% (sunflower seed cake) up to 88% (pumpkin seed cake). Another digestibility experiment was conducted using rapeseed cake and sunflower seed cake whose fibre fractions were reduced using two different processing methods (sieving and dehulling of seeds prior to pressing). The fibre-reduced press cake of rapeseed and sunflower seed cake had a substantially higher CP digestibility than their unprocessed counterpart (Manuscript 1). Three growth experiments were conducted to study the effect of partial replacement of fishmeal with press cake on performance traits of rainbow trout. In all growth experiments groups of rainbow trout were fed with either a basal diet or diets in which fishmeal CP was in part replaced by press cake based on its CP digestibility that was determined in the preceding digestibility experiments. It was found that the performance traits were influenced to a different extent in dependence of the press cake and their inclusion level. Pumpkin seed cake has been shown to have the highest potential to replace substantial amounts of fishmeal of the basal diet without significantly reducing performance traits of rainbow trout. To investigate the potential utilisation of InsP-P and the formation of inositol phosphate isomers in fish two experiments were conducted. The single and interactive effects of a mineral P supplement (monoammonium phosphate; MAP; 1 g P/kg DM of diet) and an InsP6 hydrolysing enzyme (Aspergillus oryzae 6-phytase; 2800 FTU/kg DM diet) were compared between rainbow trout and Atlantic salmon (Salmo salar). For each species a digestibility experiment was conducted under common rearing conditions of each species but using the same four diets (basal diet, basal diet + MAP, basal diet + phytase, and basal diet + MAP + phytase). The faecal disappearance of InsP6 was generally low (approximately 8%) but similar between the species when the diets were devoid of either supplement. The supplementation of phytase significantly increased InsP6 disappearance in both species, but the effect was found to be more pronounced in rainbow trout. The analysis of lower inositol phosphate isomers revealed that their hydrolysis progressed to a greater extent in rainbow trout and it suggested that InsP6 is subject to a different degradation pathway in the two species. While no significant interactive effects on InsP6 disappearance were found between the two supplements for either species, the MAP supplementation slightly decreased InsP6 disappearance in Atlantic salmon but not in rainbow trout. The experiments provide an insight into the breakdown of InsP6 and the faecal appearance of specific lower inositol phosphates and suggest that the use of press cake in feed for rainbow trout seems to be more beneficial than in feed for Atlantic salmon with regards to a more sustainable use of P resources. However, more experiments are recommended to complement these initial findings to gain a better understanding of InsP6 hydrolysis in fish.Publication Phosphorus bioavailability of fertilizers recycled from sewage sludge and their suitability for organic crop production(2020) Wollmann, Iris; Möller, KurtPhosphorus (P) nutrition of plants is a key production factor in agriculture. In an approach to recycle P from urban areas back to agriculture, technologies have been developed to produce mineral P fertilizers out of municipal sewage sludge. In this study, different P fertilizers recycled from sewage sludge have been investigated in pot and field experiments for their bioavailability to maize and several plant species of a crop rotation. It was also investigated, if bioavailability of recycled P fertilizers can be enhanced either by a soil inoculation with different bacteria strains that are efficient in P solubilizing, or by a cultivation of red clover in the crop rotation. As there is a lack of bioavailable P fertilizers in organic cropping systems, P fertilizers recycled from sewage sludge were evaluated for their suitability to be used in organic crop production. It has been shown that most of the investigated fertilizers recycled from sewage sludge have a higher P bioavailability than Phosphate Rock (PR). Fertilizer efficacy seems very dependent from specific production conditions which are decisive for the final product. Among the tested fertilizers, struvite (MgNH4PO4 . 6 H2O) was most efficient in increasing plant P offtake of maize (+ 27.5% in the field, and more than sixfold in a pot experiment, compared to the unfertilized control). Struvite and calcined sewage sludge ash (SSA) are efficient fertilizers at both acidic and neutral soil pH. Other fertilizers (e.g. untreated incineration ashes) have low solubility at soil with pH > 6, and thus, might be used on acidic soil only, or as raw material for fertilizer production. In the field experiment, the overall response to P fertilizer input was low, which probably can be attributed to a sufficient inherent P supply on the used site. An immobilization of fertilizer P over time could be shown in all experiments. Thus, recycled P fertilizers should be applied to responsive crops in the rotation. An improved P supply of maize could be shown when grown after red clover in the crop rotation. This might be attributed to a combination of different factors, such as a solubilization of sparingly soluble P forms in recycled fertilizers, following a drop in soil pH due to biological N2 fixation of clover. A recycling of P to maize via decomposed clover roots might in addition have contributed to an increased P supply of the subsequent maize. Despite this promising effect, P mobilization by clover cultivation was not sufficient to cover the entire P demand of maize. Thus, additional fertilizer P inputs to maize might still be necessary to ensure optimal plant growth on P deficient soils. With one exception, an application of different bacteria strains generally did not affect P supply of the plants. Applied bacteria seem very dependent on the environmental conditions. It is conceivable, that especially in organic systems, a soil application with external bacteria does not enhance the beneficial effects of a high microbial abundance and activity which often is already present in organic cropping systems. From an agronomic point of view, P fertilizers recycled from sewage sludge are better alternatives for organic crop production than PR. A recycling of nutrients generally fits well with basic organic principles. By introducing those fertilizers, the organic system could make a decisive contribution to the ongoing effort of closing the P cycle, and, once more, develop towards a farming system of the future.Publication Phosphorus-acquisition strategies of canola, wheat and barley in soil amended with sewage sludges(2019) Faucon, M.-P.; Kandeler, Ellen; Lambers, Hans; Firmin, S.; Michel, E.; Houben, D.; Nobile, CécileCrops have different strategies to acquire poorly-available soil phosphorus (P) which are dependent on their architectural, morphological, and physiological root traits, but their capacity to enhance P acquisition varies with the type of fertilizer applied. The objective of this study was to examine how P-acquisition strategies of three main crops are affected by the application of sewage sludges, compared with a mineral P fertilizer. We carried out a 3-months greenhouse pot experiment and compared the response of P-acquisition traits among wheat, barley and canola in a soil amended with three sludges or a mineral P fertilizer. Results showed that the P-acquisition strategy differed among crops. Compared with canola, wheat and barley had a higher specific root length and a greater root carboxylate release and they acquired as much P from sludge as from mineral P. By contrast, canola shoot P content was greater with sludge than with mineral P. This was attributed to a higher rootreleased acid phosphatase activity which promoted the mineralization of sludge-derived P-organic. This study showed that contrasted P-acquisition strategies of crops allows increased use of renewable P resources by optimizing combinations of crop and the type of P fertilizer applied within the cropping system.