Browsing by Subject "Phytate hydrolyses"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Publication Entwicklung und ernährungsphysiologische Bewertung mikrobieller Hybrid-Phytasen(2023) Metten, Alexander; Rodehutscord, MarkusTo degrade the organic phosphate storage in the best possible way, it is necessary to increase phytase efficiency in vivo. Both a better understanding of the influencing factors limiting phytate degradation in vivo and a continuous improvement of the biochemical properties of phytases to be best adapted to the conditions in the digestive tract of non-ruminants will help to achieve this. Therefore, the main objective of this work was the generation of a large number of sequentially unique hybrid phytases by directed recombination of known phytase genes with the goal to achieve improved biochemical properties compared to the wild-type phytases used. The focus of this work was the biochemical and nutritional evaluation of the newly generated hybrid phytases with respect to their suitability as feed supplements. All hybrid phytases examined showed more efficient InsP6 degradation at pH 3.0 than at pH 5.5, although the phytase activity supplemented was the same at both pH values. While InsP6 was dephosphorylated to InsP1-2 in many cases at pH 3.0, accumulation of the Ins(1,2,5,6)P4 isomer occurred at pH 5.5. In an in vitro model simulating the digestive tract of broilers, hybrid phytases with high sequential homology to the E. coli and C. braakii phytase showed high accumulation of InsP4 isomers. Interestingly, these phytases preferentially formed the Ins(1,2,5,6)P4 isomer. In contrast, other hybrid phytases were able to degrade all InsP4 isomers and in some cases high InsP2 concentrations were observed. Another in vitro experiment with a complex feed matrix consisting of soybean meal, rapeseed meal, and wheat with a high mineral content, illustrated the negative influence of certain feed-related factors on phytase efficiency. InsP6 present in the feed was significantly less degraded by all phytases used compared to a corn and soy-based feed matrix with a low mineral content. While a hybrid phytase was able to completely dephosphorylate the InsP6 of the corn and soy-based feed matrix down to the InsP3 isomer resulting in high InsP2 concentrations, the InsP6 were still detectable in the in vitro model with the more complex feed matrix and high mineral content, despite identical reaction conditions. In a final feeding trial with broilers, one of the hybrid phytases was supplemented at two doses each (500 and 1500 FTU/kg) to evaluate its suitability as a feed supplement. Also, a commercial phytase was included in the study design at the same doses setting the benchmark for phytase efficiency. A low phosphorus experimental feed based on corn and soybean meal was used. The supplementation of the used hybrid phytase resulted in a dose-dependent increase in broiler performance data such as daily weight gain, feed intake and significantly improved feed efficiency compared to the basal ration without enzyme supplementation. In addition, foot ash content was increased by 21.6% at a dose of 1500 FTU/kg phytase, indicating significantly improved bone mineralization due to the released InsP6 phosphate. By analyzing InsP6 concentration and its degradation products in different segments of the digestive tract, efficient InsP6 degradation was observed. In contrast to the in vitro experiments, no accumulation of InsP3-4 isomers could be detected in crop, gizzard or small intestine. In addition to a high exogenous phytase activity, this result also suggests a high endogenous phytase as well as phosphatase activity in the digestive tract of broilers. It can be assumed that the absence of monocalcium phosphate in the experimental rations may have induced the expression of endogenous phytases and phosphatases. This assumption is confirmed by the high precaecal InsP6 degradation, which was 63.5% in the basal ration without phytase supplementation. Nevertheless, the used hybrid phytase significantly increased the precaecal InsP6 degradation to 76.3%. The high phytase efficiency was also reflected in the measured precaecal phosphorus digestibility, which was increased by 6.8% compared to the basal ration. The commercial phytase used showed comparable improvement in broiler performance data to the non optimized hybrid phytase. This project demonstrated the development of a variety of sequentially unique hybrid phytases by recombination of known phytase genes, which exceeded the biochemical properties of the wild-type phytases in some relevant aspects. Some of the phytases showed very efficient phytate degradation when simulating the digestive tract of broilers in vitro. Also, the suitability of the tested hybrid phytase as feed additives was demonstrated by the increased performance data of broilers. The higher performance data of the broilers could be attributed to efficient phytate degradation. To achieve maximum InsP6 degradation in vivo, the feed-related and animal-related factors on phytase efficiency need to be better understood.