Browsing by Subject "Plant genetic resources"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Genebanks at risk: Hazard assessment and risk management of national and international genebanks(2023) Herbold, Theresa; Engels, Johannes M. M.Genebanks are crucial for safeguarding global crop diversity but are themselves exposed to several risks. However, a scientific basis for identifying, assessing, and managing risks is still lacking. Addressing these research gaps, this study provides risk analysis for three key risk groups: natural hazards, political risks, and financial risks, carried out on a sample of 80 important national and international genebanks, comprising at least 4.78 million accessions or roughly 65% of the reported total of ex situ conserved accessions worldwide. The assessment tool of Munich Re “Natural Hazards Edition” allowed a location-specific comparison of the natural hazard exposure. Results showed that genebanks in the Asia-Pacific region are most exposed to natural hazards, while institutions in African and some Asian countries are rather vulnerable to political risks. Financing is a major problem for national genebanks in developing countries, whereas the Global Crop Diversity Trust achieved considerable financial security for international genebanks. Large differences in the risk exposure of genebanks exist, making a location- and institution-specific risk assessment indispensable. Moreover, there is significant room for improvement with respect to quality and risk management at genebanks. Transferring risks of genebanks to third parties is underdeveloped and should be used more widely.Publication Genetic variation for tolerance to the downy mildew pathogen Peronospora variabilis in genetic resources of quinoa (Chenopodium quinoa)(2021) Colque-Little, Carla; Abondano, Miguel Correa; Lund, Ole Søgaard; Amby, Daniel Buchvaldt; Piepho, Hans-Peter; Andreasen, Christian; Schmöckel, Sandra; Schmid, KarlBackground: Quinoa (Chenopodium quinoa Willd.) is an ancient grain crop that is tolerant to abiotic stress and has favorable nutritional properties. Downy mildew is the main disease of quinoa and is caused by infections of the biotrophic oomycete Peronospora variabilis Gaüm. Since the disease causes major yield losses, identifying sources of downy mildew tolerance in genetic resources and understanding its genetic basis are important goals in quinoa breeding. Results: We infected 132 South American genotypes, three Danish cultivars and the weedy relative C. album with a single isolate of P. variabilis under greenhouse conditions and observed a large variation in disease traits like severity of infection, which ranged from 5 to 83%. Linear mixed models revealed a significant effect of genotypes on disease traits with high heritabilities (0.72 to 0.81). Factors like altitude at site of origin or seed saponin content did not correlate with mildew tolerance, but stomatal width was weakly correlated with severity of infection. Despite the strong genotypic effects on mildew tolerance, genome-wide association mapping with 88 genotypes failed to identify significant marker-trait associations indicating a polygenic architecture of mildew tolerance. Conclusions: The strong genetic effects on mildew tolerance allow to identify genetic resources, which are valuable sources of resistance in future quinoa breeding.