Browsing by Subject "Pre-treatment"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Biomass quality of miscanthus genotypes for different bioconversion routes(2017) Iqbal, Yasir; Lewandowski, IrisCurrently, a wide range of biomass based resources (wood, agricultural residues, municipal waste, perennial dedicated energy crops) are being tested for different bioconversion routes such as combustion and ethanol production. In Europe, combustion is the most prevalent bioconversion route being adopted to produce heat and electricity. By 2020, in Europe out of 139 Mtoe biomass based energy production, 110.4 Mtoe will be heat and electricity. Along with combustion, EU (European Union) focuses on increasing the share of biofuels production to achieve the EU 2020 target to reach 10% share of renewables in the transportation sector. For both aforementioned bioconversion routes, large amount of feedstocks, produced in a sustainable way, are required. Miscanthus, being a perennial dedicated energy crop has the potential to deliver high yields by using the soil resources efficiently. However, the per unit energy yield depends not only on biomass yield but also quality of biomass relevant for a specific end use. For miscanthus based combustion, high lignin contents increase the energy yield of the biomass. The main challenges are high emissions (e.g. NOx) and combustion relevant problems such as corrosion, fouling and low ash melting temperature. Other than for combustion, the high lignin content is the main problem during miscanthus based ethanol production. Presently, M. x giganteus is the only commercially grown genotype, however a wide range of genotypes are being tested under the European conditions to select the most promising ones for both combustion and ethanol production. Therefore, the focus of this study is to evaluate the biomass quality of different miscanthus genotypes for combustion and ethanol production and relevant measures for each bioconversion route to optimize biomass quality at field level to fit the user demand. To realise the aim of this study, two different field trials were used: 1) long term field trial with 15 miscanthus genotypes (four M. x giganteus, one M. sacchariflorus, five M. sinensis hybrids and five M. sinensis genotypes) was established as randomized block design with three replications; 2) field trial with M. x giganteus and switchgrass was established as a randomized split plot design with different crops as main plots, divided into three subplots with different N levels (0, 40, and 80 kg N ha-1a-1). The biomass samples collected from these field trials were processed and analysed in laboratory to test the biomass quality parameters for combustion (mineral analysis, silicon, chloride, ash, moisture and ash melting behaviour) and ethanol production (fiber analysis, acid/base based pre-treatment). The outcomes of this study show that at biomass production level, crop management practices such as selection of appropriate genotypes, fertilization and time of harvesting determine the yield, biomass quality, overall cost of production and environmental performance of the crop for a specific bioconversion route (combustion, ethanol production). The ash melting behavior during combustion process can be improved through appropriate genotype selection from an ash deformation temperature of 800 °C up to 1100 °C. For ethanol production, fiber composition can be improved up to 16% through appropriate genotype selection by decreasing the lignin content and improving the cellulose content. This improvement will not be completely translated to increase in ethanol yield. However, it can improve the overall efficiency of conversion process by decreased the lignin content and subsequently lowering the energy and chemical inputs required for pre-treatment. In this study, no quantification is made about improvement in final ethanol yield. In fertilization, N fertilization is very important because it constituted up to 72% of the emissions in the conducted LCA described in chapter-1. Therefore, in case of high N fertilization, it not only affects the biomass quality but also increases the cost of biomass production and decreases the environmental performance of the crop. Based on the outcomes of this study, it can be concluded that at this location 40 kg N ha-1a-1 fertilization is sufficient to achieve good yield and quality biomass under late harvest regimes (March). At 40 kg N ha-1a-1 fertilization, the N content in the harvested biomass was still well below the threshold level set (0.3-1%) for biomass by the ENplus wood pellets. The other important factor which offers opportunity to optimize biomass quality is time of harvesting. Through appropriate harvesting time, biomass combustion quality can be improved up to 30% through decreasing the mineral, chloride and ash content whereas for ethanol production, fiber composition can be improved up to 12% by decreasing the lignin content. In practical terms, the delay in harvest will help to meet the set quality standards and counter the relevant challenges for each bioconversion route. In current study, none of the biomasses harvested from the different miscanthus genotypes, except for M. sinensis, could meet the ENplus-B wood pellet standards. For combustion, early ripening thin stemmed genotypes such as M. sinensis are recommended under late harvest regime (March). However, the low yield of these genotypes is a major concern because low biomass quantity decreases the final energy yield. Considering the high dry matter yield, cellulose and hemicellulose content, M. x giganteus and M. sacchariflorus are recommended for ethanol production under early harvest regimes (September-October). However, the high lignin content of M. x giganteus and M. sacchariflorus reduces the efficiency of overall process. Therefore, in this study recommendations were given to breeders about development of new genotypes for combustion by combining interesting traits such as high yield and lignin content of M. x giganteus, low ash content of M. sacchariflorus, low mineral content especially K and Cl of M. sinensis, whereas for ethanol production low lignin content of M. sinensis can be combined with high yield of M. x giganteus. This study suggests that optimization of biomass quality for a specific end use can be achieved through adoption of appropriate crop management practices such as selection of appropriate genotype and time of harvesting. This is the most cost-effective way with least environmental implications.Publication Untersuchungen zur Aufbereitung und Umwandlung von Energiepflanzen in Biogas und Bioethanol(2008) Schumacher, Britt; Jungbluth, ThomasDue to finite fossil resources, one opportunity for the future is to increase the supply of energy out of renewable energy sources. One of many opportunities is the use of biomass, which offers plenty combinations of different kinds of biomass, paths of utilization and conversion techniques for a flexible adaptation to natural local and regional frameworks as well as the anthropogenic needs. For an efficient utilization of the limited arable land for the supply of bioenergy, there is a need of up-to-date and proof data about specific energy yields and yields per hectare. The aim of this investigation was to determine these data for the biogas and bioethanol sectors. Batch-tests were carried out in laboratory scaled digesters to investigate specific biogas and bioethanol yields. Additionally the testing of different techniques of pre-treatment for energy crops and their effects on the biogas yield and the progression of the formation of methane were focused. The conversion of maize silage and full ripe triticale into biogas and bioethanol was compared by an energy and environmental balance. The steam explosion technique was included. Pre-treatment The steam explosion pre-treatment of biomass increases the speed of formation of methane and partly increases the methane yields. The effects differ depending on the kind of biomass and the stage of ripening. Other techniques of pre-treatment like microwaving and cooking did not show significant or partly negative effects. A variation of parameters in the trial setup might be interesting. Besides the positive effects of the steam explosion technique there are some arguments like the additional costs of investment, the diminished concentration of nutrients respectively the increase of material flow against it. The additional energy consumption, mostly thermal energy, can be supplied from waste heat out of the combined heat and power plant (CHP). The screening and the production of technical enzymes for the efficient pre-degradation of raw materials containing high amounts of lignocellulose should be the subject of research and development in the future. The combination of biological (enzymatic), chemical, thermal and mechanical pre-treatment techniques need to be investigated with the focus on energy efficiency. Methane yields of energy crops and stillage A broad number of biogas tests had been carried out on various maize cultivars. The specific methane yields of the maize cultivars varied over the harvesting date differently. The cultivars with a low ripening number reached higher specific methane yields. The dominant factor for the energy yield per hectare was the dry matter yield, not the specific methane yield. In general it is recommended to use well adapted cultivars with high dry matter yields and a good ensilaging behaviour. The catch crops increased the methane yields per hectare just partly. But for reasons of soil conservation the cultivation is recommended. The nitrogen fertilizer had mostly a positive effect on the dry matter yields and the energy yields per hectare, respectively. Maize gained higher energy yields per hectare than switch grass. The utilization of stillage out of whole maize plants or triticale´s grain from the ethanol production as well as the utilization of by-products like straw in the biogas production could double the energy output per hectare compared to the simple ethanol production. Further options for the optimization of the biogas production under conditions of practice are digester systems well-adapted on the substrate, the use of multi step systems and the development of analytic methods in order to gain effective process control. Correlation between chemical components and measured methane yields The specific methane yields calculated out of the neutral detergents fibre, starch, sugar, raw proteins and its substrate-specific factors were very close to the experimentally determined yields of the maize cultivars for the four harvesting times. But the measured and calculated values showed no correlation. Whether the biogas tests can be replaced, by other methods or techniques of analysis of the components and the determination of additional components for the estimation of the potential of new cultivars, should be subject of further investigations. Bioethanol yields The energy yields on the conversion pathway bioethanol without using the by-products are lower than the yields via conversion into biogas, because the ethanol fermentation is limited on material that can be converted into sugar first. The advantage of the ethanol production is a fluid fuel as result of the process. Combining the ethanol production with a biogas plant, the by-products also can be used energetically and a gaseous energy carrier can be produced. There are high potentials for the bioprocess engineering, for instance in breeding of microorganisms for the degradation of lignocellulosic biomass or of C5-sugar. Furthermore a process optimization of water and energy input is recommended. Energy and environmental balance Biogas as well as bioethanol (combined with biogas) is able to reduce the consumption of non-renewable energy carrier and its emission under the investigated scenarios and the scoop set. A future task will be the development of differentiated and well-adapted concepts on the basis of a decision between (liquid) fuels or stationary supply of thermal and electrical energy out of biomass. The aim is an efficient use of the limited areas of arable land and forests for the supply with bioenergy carriers by a useful combination of biomass, paths of utilization and conversion technique depending on natural local and regional conditions as well as the anthropogenic needs.