Repository logo
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
    Communities & Collections
    All of hohPublica
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
  1. Home
  2. Browse by Subject

Browsing by Subject "Preisdiskriminierung"

Type the first few letters and click on the Browse button
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Publication
    Consumer prices

    effects of learning algorithms and pandemic-related policy measures

    (2023) Buchali, Katrin; Schwalbe, Ulrich
    When it comes to product prices, two major topics have dominated the public debate in recent years: One is pricing with the help of artificial intelligence, and the other is the price level, which has risen more than usual with the onset of the COVID-19 pandemic. Higher prices create a loss of consumer surplus and possibly total welfare, which is the reason this topic has become ubiquitous in political discussions. This dissertation contributes to the debate by extending the existing literature on algorithmic pricing, which is said to facilitate personalized pricing, as well as collusive behavior and to enhance the general understanding of how government measures enforced during the COVID-19 pandemic contributed to (short-time) price developments. Thereby, the first part of the thesis addresses the concern that tacit collusion might occur if firms employ learning algorithms, as several simulation studies have demonstrated that algorithms using reinforcement learning are able to coordinate their pricing behavior and, as a result, achieve a collusive outcome without having been programmed for it. We discuss several conceptual challenges as well as challenges in the real-world application of algorithms and show by or own simulations that resulting market prices strongly depend on the type of algorithm or heuristic that is used by the firms to set prices. In the subsequent part of the thesis we examine how a self-learning pricing algorithm performs when faced with inequity-averse consumers. From our simulations we can conclude that consumers sense of fairness, which have prevented firms from engaging in price discrimination in the past years, can be incorporated into firms pricing decisions with the help of learning algorithms, making differential pricing strategies more feasible. The discussion surrounding the above-average price levels in many countries during the COVID-19 pandemic is extended in the third part of the thesis. We present empirical evidence for the impact of government-imposed restrictions and, as a consequence of their enforcement, reduced mobility on consumer prices during the COVID-19 pandemic. We show that the stringency of government measures had a positive and significant impact on consumer prices mainly in the food sector, which means that more stringent measures induced higher consumer prices in these categories.
  • Loading...
    Thumbnail Image
    Publication
    On the distribution and adoption of genetically modified seeds in developing countries
    (2004) Basu, Arnab; Qaim, Matin
    Given the proprietary nature of most genetically modified (GM) seed technologies, the question arises as to how farmers in developing countries can gain proper access to these innovations. Based on empirical observations, a theoretical model is developed which focuses on farmers? adoption decisions in response to the pricing strategies of a foreign patent holder and the government. If the government is able to commit to the announced policy, subsidizing the use of traditional seeds can increase coverage of GM technology and domestic welfare. The possibility of the government obtaining a license to distribute GM seeds domestically through a transfer to the monopolist is also considered.
  • Loading...
    Thumbnail Image
    Publication
    Price discrimination with inequity-averse consumers

    a reinforcement learning approach

    (2021) Buchali, Katrin
    With the advent of big data, unique opportunities arise for data collection and analysis and thus for personalized pricing. We simulate a self-learning algorithm setting personalized prices based on additional information about consumer sensi- tivities in order to analyze market outcomes for consumers who have a preference for fair, equitable outcomes. For this purpose, we compare a situation that does not consider fairness to a situation in which we allow for inequity-averse consumers. We show that the algorithm learns to charge different, revenue-maximizing prices and simultaneously increase fairness in terms of a more homogeneous distribution of prices.

  • Contact
  • FAQ
  • Cookie settings
  • Imprint/Privacy policy