Browsing by Subject "Pyrolysis"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Publication Characterization of the aroma profile of food smoke at controllable pyrolysis temperatures(2023) Rigling, Marina; Höckmeier, Laura; Leible, Malte; Herrmann, Kurt; Gibis, Monika; Weiss, Jochen; Zhang, YanyanSmoking is used to give food its typical aroma and to obtain the desired techno-functional properties of the product. To gain a deeper knowledge of the whole process of food smoking, a controllable smoking process was developed, and the influence of wood pyrolysis temperature (150–900 °C) on the volatile compounds in the smoking chamber atmosphere was investigated. The aroma profile of smoke was decoded by headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS). Subsequently, the correlations in the most important substance classes, as well as in individual target components, were investigated by the Pearson test. Phenols and lactones showed an increase over the entire applied temperature range (rT = 0.94 and rT = 0.90), whereas furans and carbonyls showed no strict temperature dependence (rT < 0.6). Investigations on single aroma compounds showed that not all compounds of one substance class showed the same behavior, e.g., guaiacol showed no significant increase over the applied pyrolysis temperature, whereas syringol and hydoxyacetone showed a plateau after 450 °C, and phenol and cyclotene increased linear over the applied temperature range. These findings will help to better understand the production of aroma-active compounds during smoke generation in order to meet consumers preferences.Publication Coupling pyrolysis with mid-infrared spectroscopy for the characterization of soil organic matter(2021) Nkwain Funkuin, Yvonne; Cadisch, GeorgSoil organic matter (SOM) is known to play an important role in the global carbon cycle due to its ability to sequester atmospheric carbon dioxide (CO2) and maintenance of soil physical, chemical, and biological properties. Due to the growing need to enhance the understanding of SOM composition and dynamics as influenced by natural and anthropogenic factors, in addition to the limited ability to exist analytical techniques to provide in-depth knowledge into the constituents of SOM, a lot of research is currently focused on the development of new techniques to address the aforementioned concerns. In this study, a novel analytical technique, pyrolysis coupled with mid-infrared spectroscopy (Py-MIRS) was developed and applied to study SOM bulk chemistry in soils by measuring certain mid-infrared organic functional groups. Secondly, the developed Py-MIRS technique was applied to soil samples from different long term experiments to investigate the effects of agricultural management practices and land uses by monitoring the different functional groups. Lastly, the implications of methodological considerations of diffuse reflectance Fourier transform mid-infrared spectroscopy (DRIFTS) on specific mid-infrared functional groups and quality indices were investigated on soils from a number of long-term field experiments. Py-MIRS was developed by testing critical experimental conditions like pyrolysis temperature, heating rate, and time using a range of reference standard compounds varying in chemical and structural composition and bulk soils. As a next step in the methodological development, the suitability of the newly developed Py-MIRS was further evaluated by testing the effect of long-term management and land use on the molecular composition of SOM in bulk soils taken from long-term field experiments in Ultuna, Sweden, and Lusignan, France. The newly developed Py-MIRS technique and the evaluation of the effect of drying temperatures on peak areas obtained with DRIFTS demonstrate progress in the use of pyrolytic and spectroscopic techniques in the domain of SOM characterization. Py-MIRS revealed its potential as a rapid, reproducible, and effective technique to yield information on SOM molecular composition with minimal constraints due to mineral interferences and secondary thermal reactions. Py-MIRS also provided some insights into sustainable practices that improve SOM quality. However, the technique requires further development and testing on different clay mineralogies and land uses.Publication Evaluation of bio-oil produced from fast pyrolysis of lignocellulosic biomass as carbon source for bacterial bioconversion(2020) Arnold, Stefanie; Hausmann, RudolfScarcity of fossil resources, climate change and growing world population demand the transition from a fossil-based economy towards a bioeconomy – a knowledge-based strategy which relies on the efficient and sustainable integration of bio-based resources into value-added process chains. As lignocellulosic biomass is an abundant renewable resource which does not directly compete with food and feed, its deployment in biorefineries is of special interest for a sustainable bioeconomy. Owing to its compact and complex structure, suitable conversion techniques need to be selected. Combinations of thermochemical and biochemical conversion technologies are considered to be a promising approach regarding a fast and efficient conversion of lignocellulosic biomass into value-added products. Bio-oil derived from fast pyrolysis of lignocellulosic biomass is a complex mixture and composed of water and a wide variety of organic components. Among these components pyrolytic sugars and small organic acids are particularly interesting as potential carbon sources for microbial processes. However, bio-oil also comprises many unidentified substances, as well as components which are known to display adverse effects on microbial growth. To evaluate the potential and challenges of bio-oil as an alternative and sustainable carbon source for bacterial bioconversion this thesis was divided into three parts (Figure 1). In Part I different pretreatment strategies were applied and evaluated regarding their effect on stability and detoxification of bio-oil fractions. For this purpose, the organic solvent tolerant bacterial strain Pseudomonas putida KT2440 was applied as a reference system and cultivated on different pretreated bio-oil fractions. It was shown that solid phase extraction is a suitable tool to obtain bio-oil fractions with significantly increased stability along with less inhibitory substances. Part II is focused on the evaluation of small organic acids mainly present in bio-oil with respect to their suitability as feedstock for bacterial growth. Four biotechnological production hosts Escherchia coli, Pseudomonas putida, Bacillus subtilis and Corynebacterium glutamicum were cultivated on different concentrations of acetate, mixtures of small organic acids, as well as pretreated bio-oil fractions as carbon source for their growth. Results reveal that P. putida, as well as C. glutamicum metabolizes acetate – the major small organic acid generated during fast pyrolysis of lignocellulosic biomass – as sole carbon source over a wide concentration range and grow on mixtures of small organic acids present in bio-oil. Moreover, both strains show a distinct potential to tolerate inhibitory substances within bio-oil. Part III describes the growth behavior of a genetically engineered, nonpathogenic bacterium Pseudomonas putida KT2440 and its simultaneous heterologous production of rhamnolipid biosurfactants on bio-oil derived small organic acids and pretreated fractions. Results suggest that both maximum achievable productivities and substrate-to-biomass yields are in a comparable range for glucose, acetate, as well as the mixture of acetate, formate and propionate. Similar yields were obtained for a pretreated bio-oil fraction, although with significantly lower titers. In conclusion, this thesis shows that microbial valorization of bio-oil is a challenging task due to its highly complex and variable composition, as well as its adverse effects on microbial growth and issues with analytical procedures. This work depicts a proof of concept by outlining a potential biorefinery route for microbial valorization of pretreated bio-oil and its unexploited side streams. It provides a step in search of suitable bacterial strains for bioconversion of lignocellulosicbased feedstocks into value-added products and thus contributes to establishing bioprocesses within a future bioeconomy.Publication Evaluation of the char formation during the hydrothermal treatment of wooden balls(2023) Pfersich, Jens; Arauzo, Pablo J.; Modugno, Pierpaolo; Titirici, Maria‐Magdalene; Kruse, AndreaWith wooden balls, a visualization of the hydrothermal carbonization to show the progress of the conversion to char is presented. In the present study, the balls represent the particles of biomass to investigate the differences in conversion outside and inside of biomass particles, during hydrothermal carbonization. A special focus is on hydrochar and pyrochar formation. The wooden balls are treated in subcritical water at 220 °C for holding times between 0 and 960 min. Even after 960 min, hydrolysis of the original biomass is incomplete as cellulose and hemicellulose are linked by lignin, inhibiting the reaction with water. Moreover, two different pathways of char production can be observed. Inside of the wooden ball pyrochar is formed as any water got that deep in, on the surface hydrochar is fixed, originated from the surrounding liquid. On the ground of the HTC reactor, a thin, brittle precipitate of likely hydrochar or humins can be found either from the precipitation of loosely attached compounds on the surface of the biomass or direct precipitation from the liquid.