Browsing by Subject "Resting energy expenditure"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Publication Effekte der Proteinzufuhr während einer Gewichtsabnahme auf fettfreie Masse, Ruheenergieumsatz und physische Funktion bei übergewichtigen postmenopausalen Frauen - eine randomisierte, kontrollierte Studie(2020) Englert, Isabell; Kohlenberg-Müller, KathrinAim Weight loss in old age increases the risk of sarcopenia caused by the age-related reduction of fat-free mass (FFM). Due to the strong correlation between FFM and resting energy expenditure (REE), the maintenance of this must also be considered. In addition, the physical function (PF) must be maintained. The objective was to investigate the impact of protein intake on changes in fat-free mass (FFM), resting energy expenditure (REE), and physical function (PF) during weight loss. Methods 54 postmenopausal women (BMI 30.9 ± 3.4 kg/m²; 59 ± 7 years of age) were randomized into two groups with 0.8 g (K) or 1.5 g protein/kg body weight/d (P) energy-restricted diets (- 750 kcal of individual energy requirements) for 12 weeks, followed by six months weight maintenance with ad libitum food intake. The protein dose was evenly distributed to two liquid and one solid meal. The shakes of the P group were additionally enriched with pure whey protein. Four seminars were held to provide information on the course of the study and in particular on healthy nutrition. At the beginning and at the end of the study, the subjects kept a 7-day nutrition protocol. FFM (by bioelectrical impedance analysis), REE (by indirect calorimetry), PF (strength, endurance, and balance by short physical performance battery test (SPPB), 400 m walking speed and handgrip strength by hand dynamometer), blood parameters (lipid and carbohydrate profile, urea, vitamin D, calcium, magnesium, liver and kidney values from serum) and blood pressure were measured at baseline, after weight loss, and after follow up. The evaluation was primarily based on an intention to treat analysis with correlation and regression analysis, paired and unpaired t-tests, whereby the significance level was set ≤ at 0.05. The values given are continuous mean values ± standard deviation. Results 46 women completed the weight loss intervention and 29 were followed up after weight maintenance. Weight loss was -4.6 ± 3.6 kg (P) and -5.2 ± 3.4 kg (K) (both p < 0.001) and weight regain during follow up was 1.3 ± 2.8 kg (P, p = 0.028) and 0.4 ± 2.5 kg (K) (p = 0.392) with no differences between protein groups. Similar losses in FFM (-0.9 ± 1.1 kg (P) vs. -1.0 ± 1.3 kg (K)) and REE (-206 ± 136 kcal/d (P) vs. -239 ± 134 kcal/d (K), both p < 0.001) were observed in both groups. At follow-up, no changes in FFM were detected in both groups whereas in the NP group the REE increased again (138 ± 296, p = 0.02). The main determinants of the FFM loss were the energy deficit and the speed of weight loss. In the NP group, SPPB score improved with weight loss (0.6 ± 0.8, p < 0.001) and handgrip strength decreased (-1.7 ± 3.4 kg, p < 0.001) whereas no changes were observed in the HP group. The blood profile improved, especially regarding the carbohydrate profile, due to weight loss, and blood pressure. Conclusion A high protein weight loss diet without exercise had no impact on preserving FFM and REE but may help maintain muscle strength in postmenopausal women. As the handgrip strength can be a sensitive parameter for incipient sarcopenia even before the muscle mass decreases noticeably, it can be concluded that an increased protein intake during weight loss can counteract the risk of sarcopenia. Energy deficit and speed of weight loss should be considered as confounders in future studies. In addition, further strategies must be pursued to maintain FFM in weight loss in old age.