Browsing by Subject "Ringresonator"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Publication 10 W-Average-Power Single-Frequency Ti:sapphire Laser with Tuning Agility – A Breakthrough in High-Resolution 3D Water-Vapor Measurement(2018) Metzendorf, Simon; Wulfmeyer, VolkerThe differential absorption lidar (DIAL) technique is well suited for measuring the humidity field of the atmosphere with high spatial and temporal resolution as well as accuracy. The water-vapor DIAL of the University of Hohenheim is a mobile, ground-based, scanning system. The DIAL methodology and the application in the Hohenheim-DIAL impose stringent requirements on the laser transmitter. In this thesis, a new laser transmitter was realized and employed. It is a pulsed, actively frequency-stabilized titanium-sapphire laser system, pumped with a Nd:YAG master-oscillator power-amplifier (MOPA) and alternately seeded by two diode lasers. As pump source, two commercially custom-made, diode-pumped, Q-switched, and frequency-doubled Nd:YAG lasers in MOPA architecture were employed. The relevant properties for pumping the Ti:sapphire laser were studied. The second Nd:YAG MOPA provides a considerably higher average output power (up to P = 63 W at 532 nm, or a pulse energy of up to E = 210 mJ at a repetition rate of f = 300 Hz) and an almost ideal top-hat beam profile. Thus, efficient end-pumping of the Ti:sapphire crystal was enabled without any optical damage. The components for injection seeding of the titanium-sapphire laser, making narrowband operation at two alternating frequencies (online and offline) possible, were substantially improved. Now, advanced commercial external-cavity diode lasers (ECDL) are applied. With an analog regulation signal of a wavelength meter, the frequency of an ECDL can be stabilized precisely to a defined value (standard deviation < 1 MHz). Optionally, the frequency can be tuned according to various mathematical functions. The online-offline-switching is accomplished with a fiber switch. The crosstalk is extraordinarily low (< -61 dB), the switching time sufficiently short (~ 1.5 ms), and the spatial overlap of the signals, due to the waveguide, almost perfect. The power of the seeders in front of the resonator is more than sufficient, 17-20 mW. The Ti:sapphire laser consists of a ring resonator with four mirrors in a bow-tie layout. With adequate components, the operation wavelength at 818 nm is pre-selected and unidirectional propagation is ensured. The laser crystal is installed in an in-house-manufactured cooling mount, of which two designs were utilized and compared. The gain-switched Ti:sapphire laser was developed to operate in a dynamically stable state of the thermal lens, which arises in the crystal at high powers. To this end, the resonator was theoretically analyzed beforehand and the focal length of the thermal lens measured. The implementation of a cylindrical lens compensates the stronger contraction of the eigenmode in the tangential plane. By these means, a stable operation with an average output power of P = 10 W (corresponding to E = 33.3 mJ at f = 300 Hz; pulse duration ~ 30 ns) was realized. With a modified configuration of the cylindrical lens a maximum output power of P_max = 11.8 W (E_max = 39.3 mJ) was achieved. These values are the highest which were obtained so far for a laser of this kind, i.e., a laser transmitter whose power originates from a single radiation source (without further amplification or conversion). The laser cavity is actively stabilized to the frequency of the seeder, following a Pound-Drever-Hall technique. This yields permanent single-frequency operation with very high frequency stability (standard deviation < 2 MHz) and a narrow linewidth (< 63 MHz). These results correspond to the resolution limit of the characterizing wavelength meter. Laser emission occurs in the fundamental transverse mode, TEM_00 (M² <= 1.06). The laser system of the Hohenheim-DIAL has been successfully operated on several field campaigns. Its robustness has been demonstrated, for instance, during an uninterrupted operation for over 30 hours and an overseas transport to the USA which the system endured without damage. This work presents a vertical pointing and two scanning water-vapor DIAL measurements, confirming a high resolution and accuracy. The vertical measurement was executed for the first time at 10 W laser operation. Furthermore, two special DIAL measurements are discussed: The measurements on a strongly backscattering target demonstrate a high spectral purity >= 99.97% of the laser transmitter. Finally, an atmospheric measurement with a tuning online wavelength shows the frequency-agility of the laser and allows to determine the water-vapor absorption line experimentally. The comparison with the spectrum of a database shows a very good agreement (~ 5-10 % deviation in the absorption cross sections absolute value).