Browsing by Subject "Rohwurst"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication HybridMeat - products from animal and plant sources(2022) Ebert, Sandra Gabriele; Weiss, JochenConsumer diversification and concerns about insufficient protein supply and global malnutrition demand for an exploitation of alternative protein sources such as plant proteins. While manufacturers have made substantial progress in industrially scaled extraction processes and structuring of plant proteins e.g. by extrusion, there is still a lack of information on their fundamental functional and organoleptic properties and interactions with other ingredients in traditional formulations. As a result, food product developers are facing a lot of challenges and are often forced to base their work on trial-and-error rather than mechanistically guided approaches. This is in particular the case for foods where complex raw material requirements and production processes make the manufacture of products with high acceptance and shelf stability not trivial. This includes the design of hybrid meat products that are composed of mixtures of meat and plant proteins. There, traditional meat products are often set as a benchmark, making the performance of such mixed products mostly unsatisfactory. Establishing composition material property functionality relationships may be a first step to overcome these obstacles. Therefore, a variety of plant proteins was assessed for their composition, physicochemical properties, and techno functionalities to gain an understanding of their suitability for the formulation of hybrid meat products. This included their dispersibility, the miscibility of select plant protein fractions with solubilized meat proteins at varying pH and mixing ratios, and the characterization of their odor-active compounds. The latter included powdered as well as extruded plant proteins due to their increasing relevance in the manufacture of hybrid meat and analogue products. Following this, plant proteins were screened in terms of their performance in hybrid meat formulations and during traditional manufacture with a special focus on dry cured products in order to define feasible protein sources and application thresholds. The first part of this thesis showed that aqueous solubility, native pH, and appearance of a variety of 26 plant protein powders from carbohydrate and vegetable oil production correlated with purity and the extraction process. Solubility ranged from as low as 4 % to as high as 100 % based on the protein concentration and prevalence of select protein fractions. For example, large amounts of prolamins (wheat) or glutelins (rice, pumpkin) resulted in low values, while high shares of albumins and globulins promoted moderate to high solubility in sunflower, pea, and potato proteins. A highly soluble (100 %) small molecular weight fraction (< 24 kDa) of the latter was subsequently screened for its particle size and electrostatic and hydrophobic properties as compared to solubilized water and salt soluble meat proteins and the miscibility of both proteins was assessed at pH 3.0 to 7.0 and at select mixing ratios. Phase behavior of mixtures started to change below the isoelectric point (pI) of salt soluble meat proteins (pH ~ 5.5), which was identified as a defining boundary value. Here, one-phase/co-soluble systems (pH > pI) transitioned to two-phased/aggregated ones mediated by interactions (pH ≤ pI) in between individual meat and meat and potato proteins. This resulted in dense, irregularly shaped meat-potato heteroprotein particles, that deviated from the characteristic assembly of pure meat proteins into regular, anisotropic aggregates. A perturbing effect of potato proteins on the structural, organized association of meat proteins below their pI was found. Protein-protein interactions were based on both electrostatics and hydrophobics as shown by variations in surface charge, hydrophobicity, and particle size if sole potato/meat and mixtures were compared. For example, particle size of solubilized meat proteins increased from 18.0 ± 2.9 µm (pH 3.0) to 26.8 ± 9.0 µm (pH 3.0) in 50:50 mixtures. FTIR results confirmed alterations as a function of mixing ratio and pH. Image analysis of microstructures revealed a shift from elongated regular networks towards more disorder and irregularity along with a lower degree of branching. Besides solubility, organoleptic properties influence the suitability of plant proteins as food ingredients. Therefore, odor active compounds of two pea isolates were analyzed by gas chromatography mass spectrometry-olfactometry (GC MS O) after direct immersion stir bar sorptive extraction (DI SBSE), and results were compared to those of their respective extrudates to define changes during dry and wet extrusion. Twenty-four odor-active compounds were found, whereof nine represented major (off-) flavor contributors in peas: hexanal, nonanal, 2 undecanone, (E)-2-octenal, (E, Z)-3,5-octadiene-2-one, (E, E) 2,4 decadienal, 2 pentyl furan, 2-pentyl-pyridine, and γ-nonalactone. The quantity of these nine volatiles was affected distinctively by extrusion. Hexanal was reduced from 3.29 ± 1.05 % (Isolate I) to 0.52 ± 0.02 % (Wet Extrudate I) and (E,Z)-3,5-Octadiene-2-one and (E,E)-2,4-decadienal decreased by 1.5- and 1.8-fold when powdered and dry texturized pea proteins were compared. As a result of the perturbing effect of soluble potato proteins and the higher amount of off flavors in pea isolates compared to their extrudates, use of plant powders as additives was rejected in favor of extruded ones for all subsequent studies. As the focus of this work was the development of dry cured hybrid meat products, the effect of various amounts of extrudates on the traditional formulation and manufacture of this product class was assessed. This included the susceptibility of extrudates towards acid-induced pH changes as compared to pork meat, as well as their behavior in a traditional acidification and drying processes. To that purpose, pork meat and six wet extrudates from peas, pumpkin, or sunflower seeds were analyzed in their proximate composition and subjected to titration starting from the same pH value and using the same acid concentrations. It was shown that wet texturized pumpkin and sunflower proteins had the highest buffering capacity (BC), especially between pH 7.0 and pH 4.5, while pea protein extrudates and pork meat were more prone to acidification and similar in buffering capacity with an average of 881 ± 5 mmol H+/(kg*ΔpH). The obtained data was then used to relate BC with the compositional elements of extrudates such as minerals, proteins, select amino acid, and non–protein nitrogen. These findings on varying susceptibility towards acids were extended by studies on a minced meat model systems containing pork meat, curing salt, and various amounts (0 to 100 wt%) of wet extrudates and the chemical acidifier Glucono delta-lactone (GDL). It was shown, that increasing concentrations of plant extrudates resulted in a linear increase of the initial (pH0h), intermediate (pH6h), and final (pH48h) pH of minced meat model systems. A sufficient acidification to common target pH values in dry cured meat products (pH ~ 5.0) could be achieved with acidifier amounts of 1.0 wt% up at no more than 15 wt% of extrudates. A mathematical model was proposed to correlate pH, time, acidifier, extrudate concentration, and plant protein origin to aid in the adjustments of formulations at higher extrudate contents, and to describe thresholds of feasible extrudate and acidifier concentrations. The calculated concentrations were then implemented to manufacture dry cured hybrid sausages where meat was partially replaced by 12.5, 25, 37.5, and 50 % of pumpkin seed extrudates. All recipes reached the target pH value with an accuracy of pH 5.0 ± 0.06 thereby validating the proposed mathematical correlations. Hybrid recipes with up to 25 % of extrudates were comparable to the traditional all-meat formulation in both the drying behavior and the distribution of moisture and free water. However, higher meat replacement levels promoted distinct changes in drying behavior and product texture where chewiness, hardness, and cohesiveness decreased by up to 70 %. In conclusion, plant protein functionality differs profoundly from the one of meat proteins, and this functionality also depends on the respective protein source as well as the applied extraction process. Their structuring by extrusion provides beneficial organoleptic changes and eases their incorporation in hybrid formulations. The fundamental characterization of plant proteins in terms of their proximate composition and (physico)chemical properties may be used to establish mathematical correlations to estimate the effect of these novel ingredients in hybrid meat products. Thus, the obtained results offer a valuable basis that manufacturers can draw upon not only to create new foods within this product class but also to broaden and facilitate the application of plant proteins on a large scale.Publication New approaches in salami manufacture with in-situ exopolysaccharide-forming starter cultures(2021) Velasco Cucaita, Lina Maria; Weiss, JochenLactic acid bacteria have always been of great importance in the production of fermented sausages such as salami, as they contribute not only to microbial stability but also to acidity and flavor profiles of such products. Recently, exopolysaccharide (EPS)-forming starter cultures have attracted the interest of the food industry. EPS have water-binding, gelling, viscosity-increasing, as well as emulsifying properties and, due to these technofunctionalities, can contribute to the improvement of existing products as well as to new product developments. However, compared to hydrocolloids, which have similar functionalities, in-situ formed EPS do not have to be legally declared as ingredients on a package. Initial studies looking at the use of such cultures in spreadable, short-ripened raw sausages showed that the use of EPS-forming starter cultures can lead to a significant improvement in the spreadability of fat-reduced tea sausage and deeper acidified onion mettwurst (pH 5.1 instead of 5.6). However, no study to date has comprehensively addressed the use of in-situ EPS-forming starter cultures in sliceable, raw fermented sausage products such as salami, which differ significantly from spreadable raw sausage products in terms of product matrix. Since growth kinetics and acidification depend on the microorganism and the food matrix used, the growth and acidification behavior of selected homo- and heteropolysaccharide (HePS)-forming lactic acid bacteria as a function of different sugar concentrations (2.5 - 10 g/kg) was initially investigated. This was done to obtain an indication of the sugar concentration required in the raw sausage mass to achieve a target pH of 4.8-5.3 in the final product. Subsequently, the performance of two HePS-producing strains L. plantarum TMW 1.1478, and 1.25; and the two homopolysaccharide-producing lactic acid bacteria L. curvatus TMW 1.624 and L. sakei TMW 1.411 was investigated in a raw sausage model system (inoculation concentration 106 CFU/g), which, in addition to 25% pork back fat, 75% lean pork meat, also contained ascorbic acid (0.5 g/kg), nitrite curing salt (28 g/kg), and dextrose or sucrose (5 g/kg). Thereby, the strains to be used were specifically analyzed with regard to their suitability for EPS-formation under typical fermentation conditions prior to use in salami production. The latter was done qualitatively by confocal laser microscopy (CLSM), followed by semi-quantitative data interpretation using MATLAB. The results showed that all selected strains were able to produce EPS in the raw sausage model matrix. There, EPS were located on the surfaces of the proteins. Since presence of HePS, which are more complex in terms of chemical structure and are often charged, can lead to changes in the organization of protein matrices even when used in very small amounts due to e.g. electrostatic interactions, sausages were subsequently prepared with a HePS-forming (L. plantarum 1.1478) and a non-EPS-forming starter culture (L. sakei 1.2037; control). Moreover, the influence of different inoculation concentrations (107 and 109 CFU/g) on fermentation and associated HePS-formation, as well as their effect on quality parameters of the final products, were investigated. The selection of inoculation concentrations was governed by the hypothesis that higher inoculation concentrations could lead to a higher in-situ formed HePS amount in the raw sausage matrix and therefore to enhanced structural and thus organoleptic relevant effects. For this purpose, pork meat and fat-based raw sausages were prepared by adding and mixing spices, 0.5 g/kg Na-ascorbate, 5 g/kg sugar, the appropriate starter culture (107-109 CFU/g), and in the end 28 g/kg nitrite curing salt. Afterwards, the mass was filled, fermented (24 °C), smoked, and dried to a weight loss of 31%. In addition to pH and bacterial plate counts, the formed EPS were detected by CLSM and the influence of the formed HePS on the texture of the raw sausages was analyzed by texture profile analysis (at 16, 23, 27, and 31% weight loss) and further evaluated in a sensory evaluation for the attributes of consistency and taste. Although no significant differences were found with respect to the detected HePS and the inoculation concentration used, dependencies emerged with respect to product quality. Raw sausages produced with the HePS-producing starter culture L. plantarum 1.1478 were significantly (p < 0.05) softer than the corresponding control samples. This effect was more pronounced the higher the inoculation concentrations, which was also reflected in the sensory evaluation of samples. Semi-quantitative data interpretation of the CLSM images revealed that the HePS were predominantly formed during the first 72 h of fermentation at 24 °C, until the final pH of 4.95 ± 0.05 was reached. Although there was no clear preference in the sensory analysis performed, raw sausages with a firmer consistency are generally preferred in Germany. Accordingly, the use of an EPS-forming culture could, depending on the market, also have a negative impact on product properties. To gain a better understanding of the observed results and the influence of process conditions on in-situ HePS-formation and its effects on the quality of sliceable raw fermented sausages, the temperatures of the fermentation phase were varied in a further study. In addition to the 24 °C already examined, an additional incubation temperature of 16 °C, commonly used in the production of raw sausages, and a low temperature incubation of 10 °C were chosen, since increased stress conditions are often associated with increased EPS formation. Raw sausages inoculated with L. plantarum 1.1478 or L. sakei 1.2037 (108 CFU/mL) were fermented at 10, 16, or 24 °C within the first 7 days and then dried under the same conditions (14 °C, controlled relative humidity) until a weight loss of 31% was reached. Microbial growth, pH, and weight loss development were monitored, EPS detected with CLSM, and products further characterized by texture profile analysis and a sensory test. Here, texture profile analysis was performed not only from the final product, but also after 21% and 26% weight loss to better understand the influence of the in-situ produced HePS. Differences were found depending on the starter culture used as well as on the fermentation temperature. Products manufactured with the non-EPS-forming strain L. sakei 1.2037 reached the target weight loss of 31% slightly faster than products manufactured with the HePS-former L. plantarum 1.1478. In both products, the final weight loss of 31% was reached faster at an initial fermentation temperature of 24 °C than at the lower fermentation temperatures. A correlation of temperatures with the amount of HePS formed could not be conclusively proven using semi-quantitative data analysis of CLSM images because matrix effects complicated the determination. However, texture profile analysis results showed a difference between products fermented at 24 °C and those fermented at cooler temperatures. In addition, significant (p < 0.05) differences were again observed between products with (softer) and without (harder) HePS-forming starter cultures at weight losses at or above 21%. These results were confirmed in the final sensory evaluation of the products (pH 4.89 - 5.01; 31% weight loss). In summary, the results of this thesis show that the use of a HePS-forming starter culture in sliceable raw fermented sausage can induce specific structural and textural changes. HePS-formation and associated quality attributes may be modulated via the inoculation concentration and control of processing parameters such as fermentation temperature. The texture softening observed in the present work, can be positively or negatively associated with the product depending on the target country and market. Taken together, results of this work underline the importance of a suitable starter culture selection for the production of fermented sausages.