Browsing by Subject "Rusitec"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Publication Adaptations of Prevotella bryantii B14 to short-chain fatty acids and monensin exposure(2023) Trautmann, Andrej; Seifert, JanaThe rumen microbiome constitutes a complex ecosystem including a vast diversity of organisms that produce and consume short-chain fatty acids (SCFAs). It is of great interest to analyze these activities as they are of benefit for both, the microbiome and the host. This dissertation aims to display the proteome and metabolome of the predominant ruminal representative Prevotella bryantii B14 in presence of various SCFA and under exposure of the antibiotic monensin in pure and mixed culture (in vitro). Due to the strong contributing abundance of Prevotellaceae in the rumen microbiome, the representative P. bryantii B14 (DSM 11371) was chosen to investigate biochemical factors for the success of withstanding monensin and the impact of SCFA on their growth. The current work is composed of two effective publications. The formatting was aligned to the dissertation. The first publication, studying the supplementation of various SCFAs, showed SCFAs as growth promoting but not essential for P. bryantii B14. Pure cultures of P. bryantii B14 were grown in Hungate tubes under anaerobic conditions. Gas chromatography time of flight mass spectrometry (GC-ToF MS) was used to quantify long-chain fatty acid (LCFA) profiles of P. bryantii B14. Proteins of P. bryantii B14 were identified and quantified by using a mass spectrometry-based, label-free approach. Different growth behavior was observed depending on the supplemented SCFA. An implementation of SCFAs on LCFAs and the composition on membrane proteins became evident. Supplementing P. bryantii B14 with branched-chain fatty acids (BCFAs), in particular isovaleric acid, showed an increase of the 3-IPM pathway, which is part of the branched-chain amino acid (BCAA) metabolism. Findings point out that the structure similarity of isovaleric acid and valine is most likely enhancing the conversion of BCFA into BCAA. The required set of enzymes of the BCAA metabolism supported this perspective. The ionophore monensin has antibiotic properties which are used in cattle fattening but also for treating ketosis and acidosis in ruminants. In the second publication, P. bryantii B14 was exposed to different concentrations of monensin (0, 10, 20 and 50 uM) and to different exposure times (9, 24, 48 and 72 h) with and without monensin. Growth behavior, glucose and intracellular sodium concentration were determined. Proteins were analyzed by label-free quantification method using the same method as in the previous mentioned experiment. Fluorescence microscopy was used to observe extracellular polysaccharides (EPS) of P. bryantii B14. A progressing monensin exposure triggered disconnection between P. bryantii B14 cells to the sacrificial EPS layer by increasing its number and amount of carbohydrate active enzymes (CAZymes). Simultaneously, an increase of extracellular glucose was monitored. Reduction of intracellular sodium was likely to be performed by increasing the abundance of ion-transporters and an increased activity of Na+-translocating NADH:quinone oxidoreductase under monensin supplementation. The role of monensin supplemented Prevotella in a mixed culture of the rumen microbiome was described. Extracted rumen fluid from cows was incubated anaerobically by using the rumen simulation technique (Rusitec). Proteomics of the solid phase was applied by using a similar approach as in the previous related studies. Metabolomics of the liquid phase from the Rusitec content was performed by using 1H-nuclear magnetic resonance (NMR) spectroscopy. Further parameters such as pH, gas and methane production were monitored over time. The experiment was constituted out of three phases starting with an adaptation phase of 7 days. A subsequent treatment phase followed, where monensin was supplemented via the daily introduced total mixed ration (TMR) for further 7 days. The elution phase was the final phase when monensin supplementation was stopped and monitoring was continued for further 3 days. Metabolomics and proteomics showed that members of the genus Prevotella remained most abundant under monensin supplementation. Furthermore, shifting the ruminal metabolism to an increased production of propionate by shifting the metabolism of Prevotella sp. to an enhanced succinate production. The current work shows the impact of SCFAs on various metabolic functions of P. bryantii B14. Diverse defence mechanisms of Prevotella sp., in particular P. bryantii B14, were shown to avoid the antibiotic effects of monensin.Publication Fermentations- und Syntheseleistung der mikrobiellen Gemeinschaft des Pansens in vitro bei Variation der Grobfutter- und Stickstoffquellen(2017) Zuber, Karin Helga Renate; Rodehutscord, MarkusIn the first part of this doctoral thesis five batches of maize silage (MS), five batches of grass silage (GS) and three batches of alfalfa silage were incubated in the Hohenheim gas test. The variation of silages based on in vitro gas production kinetics and ammonia-nitrogen-concentration (NH3-N-concentration) in the mixture of rumen liquid and buffer solution over time was determined. For this purpose, 10 glass syringes per silage batch were used per experimental run. 3 glass syringes were used to determine the gas volume over 72 hours. The remaining 7 glass syringes were removed from the incubator at 7 time points and the NH3-N-concentration in the mixture of rumen liquid and buffer solution was determined. Upon the incubation of the 13 silages both silage species and batch had an influence on the potential gas production and on the rate constant of gas production. The determined potential gas production was between 62.5–74.2, 56.0–64.9 and 39.9–59.6 mL/200 mg organic matter (OM) for MS, GS and alfalfa silages. The rate constant of gas production amounted to 5.5–7.3, 3.8–7.1 and 5.0–7.7 %/h for MS, GS and alfalfa silages. Both silage species and batch as well as the time point and their interactions had an influence on the NH3-N-concentration in the mixture of rumen liquid and buffer solution. In the second part of this work one MS and one GS were incubated in the rumen simulation Rusitec. The influence of the forage source without supplementation of concentrates on the NH3-N-concentration in fermenter liquids over time and the fermentation and synthesis characteristics of the ruminal microbial community were investigated in vitro. Degradation of nutrients, gas, methane and short chain fatty acid (SCFA) production as well as NH3-N in effluent and microbial protein synthesis (MPS) were measured. The NH3-N-concentration in fermenter liquids was determined at different time points within two periods. Upon the incubation of GS, degradation of OM and fibre fractions, amount of NH3-N in the effluent as well as MPS and its efficiency (EMPS) was higher than with incubation of MS. Degradation of crude protein (CP) and total amount of SCFA were unaffected by silage. N-efficiency was higher with incubation of MS than with incubation of GS. During period 1, NH3-N-concentration in fermenter liquids increased for all treatments within the first 24 hours and was not different between the treatments. For GS, NH3-N-concentration subsequently continued to rise up to a maximum value at the last time point of measurement in period 1. NH3-N-concentrations in fermenter liquids in period 2 remained on a relatively constant level for MS and GS, differing between the two silages at all five time points of measurement. Mean NH3-N-concentration in fermenter liquids measured in period 2 corresponded in level with NH3-N-concentration determined in the effluent of both silages. In the third part of this work, the influence of different N-supplements to MS compared to GS on fermentation and synthesis characteristics of the ruminal microbial community in vitro was investigated. GS and MS were incubated in a Rusitec, the latter being either unsupplemented or supplemented with urea, pea protein, pea peptone or a mixture of amino acids to adjust N-content of MS to that of GS. The NH3-N-concentration in fermenter liquids was determined 0, 2, 4, 12 and 24 hours after changing the feed bag on day 12. Results concerning degradation of OM, CP and N-free extracts showed a positive influence of N-supplementations except for MS+pea protein. Furthermore, degradation of detergent fibres were partially improved through N-supplementations. The values of MPS and EMPS were enhanced through all N-supplementations. Thereby supplementation of urea and pea peptone to MS resulted in the largest increase in EMPS. However, through none of the N-supplements the level of GS in EMPS could be achieved. The determined course of NH3-N-concentration in fermenter liquids was largely similar between the treatments. Variation in nutrient composition of MS, GS and alfalfa silages were reflected in a large variation both in gas production kinetics and curve shape of NH3-N-concentration in the mixture of rumen liquid and buffer solution. Upon the sole incubation of MS and GS in the Rusitec, GS promoted MPS and EMPS stronger than MS. Supplementation of MS with different N-sources resulted in an increase in MPS and EMPS compared to MS without N-supplementation. Thus the assumption of an insufficient N-supply of ruminal microbes during the sole incubation of MS in vitro was confirmed. However, through none of the N-supplementations level of GS in EMPS could be achieved.Publication Investigations on the effects of forage source and feed particle size on ruminal fermentation and microbial protein synthesis in vitro(2012) Hildebrand, Bastian; Rodehutscord, MarkusThe synthesis of microbial protein in the rumen has a major impact on protein- and amino acid supply in ruminants. The amount and amino acid composition of the protein that enters the small intestine primarily depends on diet formulation. In the present studies the effects of maize silage (MS) and grass silage (GS) on ruminal fermentation and microbial protein synthesis were investigated, considering methodical aspects of in vitro studies, particularly grinding of feed samples. In the first experimental series five mixed diets with different proportions of MS and GS (100:0, 79:21, 52:48, 24:76 and 0:100) and a constant proportion of soybean meal (11%) were used. The content of crude protein (CP) and fibre fractions increased, whereas the content of organic matter (OM) and starch decreased with increasing proportion of GS in the diet. It was hypothesised that a combination of MS and GS can benefit microbial growth and thus fermentation of nutrient fractions to a higher extent than using only one forage source separately. It was also to be investigated how changes in diet composition affect the amino acid profile of microbial protein. A well standardised semi-continuous rumen simulation technique (RUSITEC) was used, which is a commonly accepted experimental model in investigations on ruminal fermentation. Changes in fermentation characteristics, as a result of changing the MS-to-GS ratio, were tested for linear and quadratic effects in order to identify possible associative effects. Prior to the in vitro incubation, feedstuffs were dried and ground. It was aimed to investigate in which way fermentation in the RUSITEC system is influenced by mean feed particle size. Therefore two milling screen sizes (MSS; 1 vs. 4 mm) were used in all diets and results on fermentation characteristic were tested for possible interactions of forage source and MSS. One incubation period lasted for 13 days (6 days adaption period, 7 days sampling period), and each treatment was tested in at least three replicates. Ruminal digesta, obtained from rumen-fistulated wether sheep, was used as the inoculum for starting the incubation. Diets were fed once daily to the RUSITEC system, and nylon feed bags remained for 48 h inside the fermentation vessel. A buffer solution, containing 15NH4Cl, was infused continuously into the vessel and the respective effluent was analysed for short chain fatty acids (SCFA) and NH3-N. Solid- and liquid- associated microbial fractions were isolated from the feed residues, the liquid inside the vessel and the effluent by differential centrifugation. The flow of microbial CP was quantified on the basis of N and 15N balances. The feed residues were analysed for crude nutrients and detergent fibre fractions and the respective degradation rates were calculated. OS and CP in the feed residues were corrected for the contribution of solid-associated microbes. The degradation of OM and fibre fractions, as well as amounts of NH3-N increased linearly with stepwise replacement of MS by GS. Degradation of CP was unaffected by diet composition, as well as total SCFA production. The degradation of OM and CP was higher in coarse milled (4 mm-MSS) than in fine milled (1 mm-MSS) treatments, accompanied by higher amounts of NH3-N and total SCFA. An improvement of growth conditions for some microbial groups, e.g. anaerobe fungi, was discussed. The amount of microbial CP increased linearly by the stepwise replacement of MS by GS, and was higher at 4 mm-MSS than at 1 mm-MSS. The amount of available N was assumed to advance microbial growth in the RUSITEC system. Efficiency of microbial CP synthesis was improved from 29 to 43 mg microbial N per g degraded OM by increasing the proportion of GS in the diet, but was unaffected by MSS. The N content and the profiles of amino acids of the three microbial fractions, as well as the ratio of solid- to liquid-associated microbes were affected by diet composition and MSS. Interactions of forage source and MSS were rare. However, the results indicated interactions between dietary factors and origin of microbial isolate on characteristics of microbial protein synthesis. In order to provide additional information on the nutritional value, the mixed diets were evaluated by two further methods. The total tract digestibility of crude nutrients was determined in wether sheep. The content of metabolisable energy was similar between diets and averaged 11.5 MJ per kg dry matter. The in vitro gas production was measured within 93 h by using a modified Hohenheim gas production test, providing information on kinetics and extent of ruminal fermentation. Cumulative gas production decreased with increasing proportion of GS in the diet. A negative effect of coarse milling on fermentation in the Hohenheim gas production test was confirmed. Across all diets gas production was delayed at 4 mm-MSS compared to 1 mm-MSS. The results from both approaches supported the findings of the RUSITEC study that a stepwise replacement of MS by GS led to a linear response in degradation of nutrients. As indicated by the gas production data, positive associative effects might only occur in the first hours after starting an incubation. When mixed diets are used effects cannot be clearly related to individual diet ingredients. Moreover, in the mixed diets interactions between soybean meal inclusion and forage source or feed particle size cannot be excluded. Therefore pure silages were incubated separately in the RUSITEC system in the second experimental series and three milling screens of different size were used (1, 4 and 9 mm). In accordance with the first experimental series, degradation of OM, fibre fractions and non-structural carbohydrates, production of NH3-N, as well as microbial CP flow and efficiency of microbial CP synthesis were higher in GS than in MS. A higher degradation of CP was found for MS than for GS, indicating interactions between forage source and soybean meal inclusion. An increase in MSS from 1 mm to 9 mm led to an improvement in the degradation of OM, CP and non-structural carbohydrates, particularly of starch in MS, as well as in the microbial CP flow for both silages. But the efficiency of microbial CP synthesis and microbial amino acid profile were less affected by MSS. In the second experimental series additionally the effect of available N on fermentation of MS was investigated. The supplementation of urea-N improved the degradation of non-structural carbohydrates, especially starch, but not that of fibre fractions in MS. The efficiency of microbial CP synthesis was increased from 26 to 35 mg microbial N per g degraded OM by urea-N supplementation to MS. The way of urea administration, either supplied together with the feed once daily or infused continuously by buffer solution, had only marginal effects on fermentation characteristics. It was concluded that microbial growth is improved by degradation of OM from GS compared to MS and by an increasing availability of N in the RUSITEC system. Meaningful associative effects of mixtures of MS and GS on ruminal fermentation characteristics are not likely to occur. However, transferability of results to other batches of MS and GS is limited, as high variations in chemical composition are known for both types of silage. Fermentation of MS- and GS-based diets in the RUSITEC system benefits more by coarse milling at MSS up to 9 mm than by fine milling at 1 mm-MSS. Consequently, variations in MSS and feed particle size distribution have to be taken into account when evaluating feeds by rumen simulation systems. The changes in composition and contribution of microbial fractions give indications to a shift in the microbial community as a result of variation of silage type and feed particle size, but further research on this aspect is needed. Moreover, the present results stated that the origin of the microbial samples is very important for measurements on microbial protein synthesis.