Repository logo
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
    Communities & Collections
    All of hohPublica
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
  1. Home
  2. Browse by Subject

Browsing by Subject "Sodium chloride"

Type the first few letters and click on the Browse button
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Publication
    Effect of varying salt concentration on iridescence in precooked pork meat
    (2022) Ruedt, Chiara; Gibis, Monika; Weiss, Jochen
    The objective of this study was to investigate the effect of salt concentration on meat iridescence in cured cooked pork products. In addition, the influence of nitrite and pigmentary color on iridescence and its visual macroscopic perception was ascertained. Sample cubes from the pigs M. longissimus thoracis et lumborum were salted with either NaCl (20 g/kg, 40 g/kg) or nitrite curing salt (6 g/kg, 20 g/kg, and 40 g/kg) and subsequently cooked. Control samples were not salted. The effects of NaCl and curing salt on iridescence, instrumental color and microstructure were evaluated. Salt treatment significantly (p < 0.05) increased water-holding capacity, mean myofibers diameters and iridescence and reduced light scattering (L* value). An iridescence limit was reached with the 20 g/kg salt treatments. No differences between sodium chloride and nitrite curing salt were observed for both visual evaluation and colorimetry of the interference colors. Iridescence increases were attributed to a swelling of the myofilament lattice and thus reduction of intermyofibrillar spaces as well as an optical clearing of the myofibrils by dissolution of myofibrillar proteins that both reduce light scattering and allow more reflectance and interference to occur.

  • Contact
  • FAQ
  • Cookie settings
  • Imprint/Privacy policy