Browsing by Subject "Soil pH"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Publication Efficiency of phosphorus fertilizers derived from recycled biogas digestate as applied to maize and ryegrass in soils with different pH(2022) Bach, Inga-Mareike; Essich, Lisa; Bauerle, Andrea; Müller, TorstenThree phosphorus (P) fertilizer fractions recycled from biogas digestates were tested alone and in combination for their efficiency in two agricultural surface soils with different pH: a silty sandy loam and a clay loam. The experiments were carried out in pots under greenhouse conditions, using mineral triple superphosphate (TSP) as a reference. Maize was cultivated for 50 days, followed by ryegrass cultivation for an additional 84 days in the same soil, without additional fertilization. The variables investigated were above-ground plant biomass production, plant phosphorus concentration and content, and plant available phosphorus concentration in soil. The dry matter (DM) yield of maize was increased by the organic P fertilizers equal to or more than TSP in both soils. In the neutral soil, biomass was almost doubled compared to TSP when using one of the fractions (Struvite containing P-Salt) alone or in combination with dried solid fractions. P concentration in maize cultivated in the neutral soil was not significantly different between the P fertilization treatments. However, associated with biomass increase, the total P content in maize plants was equal to or higher than that with TSP. In the acidic soil, P concentration and total P content in maize plants, as well as the calcium-acetate-lactate extractable P (CAL-P) concentration in soil, were equal to or even higher than TSP. Ryegrass DM yield was unaffected by all P fertilizers, independent of the soil, although P concentration and total P content increased in the acidic soil with all fertilizers. Our results show that recycled P fertilizers from biogas digestates are effective P fertilizer alternatives to mineral TSP for maize cultivation under acidic and neutral soil conditions. The lack of growth effects in ryegrass indicates that recycled P fertilizers do not require changes in weed control. On the other hand, P extraction by ryegrass in overfertilized acidic soils as an option for soil remediation also works in soils fertilized with biogas digestate fractions.Publication Grape pomace's potential on semi‐arid soil health enhances performance of maize, wheat, and grape crops(2023) Mpanga, Isaac K.; Neumann, Günter; Brown, Judith K.; Blankinship, Joseph; Tronstad, Russell; Idowu, OmololuBackground: Grape pomace (GP) is a by-product of wineries after filtering the grape juice for wine production. GP contains seeds, pulp, skin, and stalks with acidic properties, and it is normally composted before using as a soil amendment. However, composting GP requires more time, labor, and equipment; furthermore, composting loses some of the desirable organic acids for arid soils. The acidic properties of these organic acids and the plant nutrients in GP make it a desirable amendment for arid soils in both non-composted and composted forms. Aim: This study investigates the potential of directly applying GP as a soil amendment and its impact on arid soil health and plant performance. Methods: To test the potential of non-composted GP as a soil amendment, greenhouse and field studies were conducted by combining GP with existing management practices (manure application for soil used in the greenhouse study and fertigation for the field study) to assess the effects of GP on soil health and crop (maize, wheat, and grape) performance. Results: Adding 5% GP to an alkaline soil significantly increased maize and wheat growth and shoot nutrient concentrations in the greenhouse and grapes in the field (48% yield increase). The significance of GP on maize, wheat, and grapes was associated with soil nutrient enhancements (i.e., nutrients supplied, increase in organic matter and microbial biomass increase, reduction in pH, and better nutrient mobilization). Conclusion: GP has the potential for direct use as a soil amendment for soil and crop health improvement, especially in arid soils with high pH and limited soil organic matter.