Browsing by Subject "Soja"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Agrogentechnik und Biotechpflanzenproduktion : Entwicklung, Stand und Zukunftspotential(2016) Kuhn, EkkehardPflanzen sind die Nahrungsgrundlage für Mensch und Tier und werden es bleiben. Was unverfälschte Natur zu bieten hat, konnte nie befriedigen, doch war ein langer, weit in die vorchristliche Zeit zurückreichender Weg zurückzulegen, um von essbaren Wildpflanzen und einfachen Landrassen zu den heutigen Hochleistungssorten bei Getreide, Soja, Raps und anderen zu gelangen. Auch heute ist das Potential der klassischen Pflanzenzüchtung noch keineswegs erschöpft. Genomsequenzierung, auf molekulare Marker gestützte Identifizierung züchterisch wertvoller Merkmale und andere früher unbekannte Methoden können Züchtungsprogramme vereinfachen und die Sortenentwicklung beschleunigen. Es bleibt aber eine prinzipielle Schranke, welche die konventionelle Pflanzenzüchtung von wenigen Ausnahmen abgesehen nicht überwinden kann: Sie kann die Artgrenzen nicht überspringen und bleibt auf die Nutzung des arteigenen Genvorrats angewiesen. Das änderte sich um 1985, als es erstmals gelang, bakterielle Gene in dafür gut geeignete Modellpflanzen wie den Tabak einzuführen und zwar so, dass sie „exprimiert“ wurden, d. h. ein funktionelles Proteinprodukt lieferten und sich stabil an die sexuellen Nachkommen dieser ersten transgenen Pflanzen vererbten. Zehn Jahre später begann der kommerzielle Anbau von herbizidresistentem und wenig später insektenresistentem Mais in den USA und Kanada. Es war die Geburtsstunde der Agrogentechnik. Heute werden transgene Kulturpflanzen dort, wo ihre prinzipiellen Gegner weniger Einfluss haben als hierzulande, auf mehr als 180 Millionen ha Ackerland angebaut. Mehr als eine Milliarde Menschen und ein Mehrfaches an Nutztieren haben sich bis heute von „Genpflanzen“ und daraus hergestellten Nahrungs- und Futtermitteln ernährt. Der Grund für den Erfolg der neuen Technik liegt darin, dass sie messbare wirtschaftliche und ökologische Vorzüge hat, die sich in niedrigeren Umweltbelastungen, höheren Erträgen und deutlichen Einkommensverbesserungen der landwirtschaftlichen Betriebe niederschlagen. Während man die Vorteile der Agrogentechnik heute leicht erkennen kann, sind die ihr zugeschriebenen Risiken spekulativ geblieben. Es gibt weder zwingende theoretische Argumente noch praktische Erfahrungen, die dazu berechtigen, der gentechnischen Pflanzenzüchtung ein gegenüber traditionellen Verfahren größeres Gefahrenpotential zuzuschreiben. Ihre realisierbaren Anwendungen gehen über den gegenwärtig noch dominierenden Anbau herbizid- und insektenresistenter Ackerpflanzen weit hinaus. Sie umfassen Nahrungspflanzen mit erhöhter Krankheitsresistenz, verbesserter Trockentoleranz, besserer Verträglichkeit aus ihnen hergestellter Lebensmittel, ausgeglichenem Gehalt an Aminosäuren, Vitaminen und Spurenelementen ebenso wie Industriepflanzen zur Produktion von Grund- und Wirkstoffen für die Chemie- und Pharmaindustrie. An diesen Entwicklungen arbeiten öffentliche und private Forschungseinrichtungen überall in der Welt. Der Mangel an nutzbarem Ackerland, Trinkwasser und sich abzeichnende Folgen des Klimawandels für die Landwirtschaft erzeugen einen wachsenden Druck zur möglichst wirkungsvollen Nutzung aller verfügbaren Ressourcen. Zwar kann die Agrogentechnik das Welternährungsproblem ebensowenig dauerhaft lösen wie irgendeine andere Technik, solange das exponentielle Wachstum der Erdbevölkerung nicht zum Stillstand kommt. Sie vermag aber die Folgen der Übervölkerung abzumildern; denn sie leistet einen wesentlichen Beitrag zur Verbesserung der Grundversorgung und zu einer effizienteren, die Naturvorräte schonenden Landwirtschaft. Die Verdrängung der konventionellen Sorten durch transgene wird deshalb weitergehen. Transgene Ackerpflanzen der ersten Generation, die überwiegend nur ein transgenes Merkmal tragen, werden gegenwärtig rasch durch modernere Stapelsorten ersetzt, die zwei oder mehrere Transgene exprimieren. Sie sind oft herbizidtolerant und gleichzeitig gegen alle wichtigen Schädlinge resistent, die in den jeweiligen Anbaugebieten vorkommen. Gleichzeitig kommen immer mehr Sorten auf den Markt, die nicht nur für die Produzenten Vorteile haben sondern auch ernährungsphysiologisch wertvoller sind als ihre konventionellen Vorläufer. Am Ende dieser Entwicklung werden die konventionellen Sorten auf dem Agrarweltmarkt kaum noch eine Rolle spielen. Dieses Buch behandelt Geschichte, Methoden, Entwicklungsstand und Zukunftspotential der Agrogentechnik, beschreibt typische Vertreter dieses Kulturpflanzentyps und gibt anhand ausgewählter noch im Versuchsstadium stehender Prototypen einen Ausblick auf die kommende Entwicklung und ihre absehbaren Auswirkungen auf die Tier- und Pflanzenproduktion.Publication Species of the Diaporthe/Phomopsis Complex (DPC) in European soybean and establishment of quadruplex Real-Time PCR for diagnosis(2022) Hosseini, Behnoush; Vögele, RalfDiaporthe seed decay is among the most disruptive soybean diseases around the world, which cause significant yield losses and affect soybean quality. Different Diaporthe species cause this disease, while Diaporthe longicolla is considered the main causal agent. The species of this fungal complex (genus Diaporthe is also called the Diaporthe/Phomopsis Complex / DPC) have to be accurately identified for epidemiological studies of the disease and for optimal control measures. To identify the major causal agents of seed decay in Europe, DPC-damaged soybean seeds of various cultivars, that were collected from different fields in Germany, France, and Austria were tested by seed plating. 32 Diaporthe isolates could be obtained. The isolates were morphologically identified by the colors and shape of the colony, conidia dimensions, and by whether pycnidia with α- and/or β-conidia or perithecia with ascospores are formed. To corroborate morphological identification, sequences of the internal transcribed spacer (ITS), translation elongation factor 1-α (TEF1), and beta-tubulin (TUB) sequences were obtained. From the results of both morphological and molecular analyses it became clear that all isolates belong to one of the four species D. longicolla, D. caulivora, D. eres, and D. novem. The pathogenicity of all strains on soybean was tested. Molecular phylogenies were calculated and based on the above results updated species descriptions were created. This study identified these four species as the main Diaporthe pathogens for soybean in central Europe. A sensitive and accurate method for quick detection of these pathogens was developed based on multiplex real-time PCR. Specific TaqMan primer-probe sets for the four species were designed based on TEF1 sequences. The primer-probe sets were tested for specificity and efficiency using PCR products and genomic DNA from the four Diaporthe species and several other soybean pathogens. These primer-probe sets reliably distinguish the different species and they can be used to detect them in the same reaction by quadruplex real-time PCR. DNA from different soybean plant materials including healthy and infected seeds or seed coats, stems, and leaves was used to test the quadruplex real-time PCR assay. Application of the assay was extended to quantify the pathogens. Standard curves for the four species were created from serial dilutions of genomic DNA diluted with DNA from soybean tissue. An additional standard curve was created from serial dilutions of soybean DNA diluted with ddH2O. To gain the ratio of fungal DNA per plant DNA (ng/ng), DNA samples from soybean tissues can now be examined in the new assay and a parallel SYBR® Green-based real-time PCR. The assay was first applied to six soybean seed lots with putative Diaporthe contamination. In all seed lots seeds contaminated with Diaporthe species and even some seeds infected with more than one Diaporthe species were found, while other seeds were free of the pathogens. The load of fungal biomass varies strongly between individual seeds.