Browsing by Subject "Sorghum"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Publication Association analysis of genes controlling variation of flowering time in West and Central African sorghum(2012) Bhosale, Sankalp; Melchinger, Albrecht E.Sorghum is extremely important for the food security in the arid to semi-arid regions of West and Central Africa (WCA). A serious constraint to the sorghum production in WCA is the scattered beginning but relatively fixed end of the rainy season among years, forcing farmers to adjust their individual sowing dates according to the start of the rains. Owing to the delayed sowing and fixed end of the rainy season, farmers require varieties that flower at the end of the rainy season, regardless of the sowing date. Photoperiod sensitivity of sorghum accessions is an important adaptation trait that allows flowering or synchronized flowering of the accessions at the end of the rainy season. This is also particularly important in avoiding grain mold, insect and bird damages for early maturing varieties, and incomplete grain filling due to soil water shortage occurring at the end of the season in late maturing varieties. Cultivars with photoperiod sensitivity may have the potential to increase yield and yield stability. Unfortunately, in WCA most of the present day cultivars are photoperiod insensitive. Furthermore, unavailability of simple screening methods in selecting photoperiod sensitive cultivars complicates the situation. Breeding techniques such as marker assisted selection (MAS) by employment of molecular markers would greatly enhance the selection efficiency for this major adaptation trait. Candidate-gene (CG) based association studies can assist in investigating the effect of polymorphisms in flowering time genes on phenotypic variation. Allele-specific molecular markers can be developed after a significant marker-phenotype association is identified. These markers can effectively be used in MAS of photoperiod sensitive sorghum cultivars. In this study we carried out a CG based association analysis to investigate the association between variation for photoperiodic sensitivity of flowering time in sorghum and polymorphisms in six partially amplified genes putatively related to variation in flowering time. Five out of six CGs were known to be involved in photoperiod pathway of flowering time [CRYPTOCHROME 1 (CRY1-b1), CRYPTOCHROME 2 (CRY2), LATE ELONGATED HYPOCOTYL (LHY), GIGANTEA (GI), HEADING DATE 6 (HD6)], and the gene SbD8 was involved in the gibberellic acid (GA) pathway of flowering time. In the first part of the study we determined the presence, the expression and the molecular diversity of genes homologous to the important flowering time gene D8 in maize on a set of 26 sorghum and 20 pearl millet accessions. Homologs of D8 were successfully amplified and tested for their expression in sorghum (SbD8) and pearl millet (PgD8). Pearl millet, because of its autogamous nature, showed higher nucleotide diversity than sorghum, which is an allogamous species. In maize, a 6 bp deletion flanking the SH2-like domain of D8 was found to be significantly associated with flowering by Thornsberry et al. (2001). We found in the PgD8 gene a 3 bp insertion or deletion (Indel) flanking the SH2 domain in the region, which was only conserved between D8 and PgD8. Cluster analysis performed for the D8, SbD8, and PgD8 indicated that maize is more closely related to pearl millet than sorghum. These findings suggest that, similar to maize, the indel in PgD8 flanking the SH2 domain might play an important role in determination of flowering. It is advisable to carry out an association study to reveal the potential role of PgD8 in flowering time control in pearl millet. After successfully amplifying and confirming the expression of SbD8 and PgD8, we carried out the association analysis on the selected CGs. A panel of 219 mostly inbred accessions of sorghum from major sorghum growing areas in WCA was complied. In the second part of the study the association analysis panel of accessions was phenotyped for their flowering response in the field in 2007 in Mali. The entire panel was sown twice (June and July), photoperiod response index (PRI) was estimated as the difference between DFL50% of the two sowing dates of the accessions. The PRI of the accessions showed a wide range from close to zero (photoperiod-insensitive) up to values close to 30 or above (highly-photoperiod sensitive). This result confirmed that the range of response based on the choice of the accessions was appropriate for an association analysis. The plant height reduction observed in accessions sown in July compared to the once sown in June was in accordance with previous studies performed in West African sorghum varieties. The sorghum accessions were genotyped using 27 simple sequence repeat markers. Population structure analysis using software STRUCTURE was carried out to control the false positives in the association analysis. The results showed existence of two subgroups in our sorghum accessions. The first subgroup included mainly race guinea (83%) originating from western West African countries such as Mali and Bukina Faso and the second subgroup included accessions mainly from Nigeria and Niger and also accessions originating from other countries and other major races. The race guinea could clearly be distinguished from the other races. Fisher's exact test for the presence of earliness among subgroups showed that there are significantly (p = 0.06) more early maturing accessions in subgroup one than subgroup two. But there was an absence of a clear structuring pattern. The study suggests that the race, the geographical origin, and maturity of the accessions are the most likely forces behind the observed structuring pattern of the accessions. We found a high level of genetic diversity among the sorghum accessions. Race guinea was found to be the most diverse and race kaura was the least diverse. In general, the estimates of the gene diversity were comparable to previous studies. The results showed that clustering of early-intermediate maturing guinea varieties may have increased the linkage disequilibrium (LD) in subgroup one compared to subgroup two. The differences in the extent of LD between our study and those in the previous studies can be due to the differences in the molecular markers used as well as differences in the racial composition of the accessions studied. In the final part of the study the association analysis was carried out using a mixed-model method. This method takes both population structure and kinship information into account. The candidate genes polymorphism data were obtained by amplifying and sequencing of the chosen genes. The association analysis for the polymorphism found within the CGs was carried out using values of PRI for each accession. From the six genes studied, genes CRY1-b1 and GI had several polymorphic sites which were significantly (p < 0.005) associated with PRI variation in the sorghum panel. The most important polymorphism in the gene CRY1-b1 showed an effect on PRI value of up to -4.2 days. This single nucleotide polymorphism (SNP) at position 722 in CRY1-b1 was located in the flavin adenine dinucleotide binding domain (N-terminal domain) of SbCRY1; hence, this domain appears to be important in photomorphogenesis in sorghum. In the case of the GI gene homolog, SNP888 had the largest effect on PRI of about +8 days. Similar to the studies in rice, the GI gene delayed flowering under June sowing (long-day conditons) and shortened the time to flower in sorghum under July sowing (short-day conditons). Therefore, the action of the GI gene homolog in sorghum might be revealed by a detailed investigation of GI by comparison of sorghum accessions grown under short-day and long-day conditions. In the case of gene SbD8, no significant association with PRI could be found; hence, the potential involvement of this gene in flowering time control of sorghum was not confirmed. Negative Tajima?s D values, of CGs indicated that the genes may have been subjected to adaptive selection as variation in flowering time may confer adaptive advantages in sorghum. The results showed that CG-based association analysis using a mixed model approach can be successfully applied to unravel the genetic variation related to phenotypic variation in flowering time. The polymorphisms significantly associated with PRI can be used to develop cleaved amplified polymorphic sequence markers. Functional markers could also be created directly from the significant SNPs. These molecular markers can serve as powerful tools in MAS for sorghum to identify cultivars sensitive to photoperiod.Publication Genotypic responses of rainfed sorghum to a latitude gradient(2016) Abdulai, Alhassan Lansah; Asch, FolkardClimate change poses various challenges to crop production systems. Coping with the changing climate requires adaptation strategies that will enhance the resilience of crop production systems to the resultant aberrant weather. However, the impacts of the changing climate are extremely difficult to predict because the associated extreme events result in a complex of abiotic stresses. These stresses act singly or in synergy with others to affect physiological processes at the different growth and development stages of crop plants. Currently, the physiological and phenological (developmental) response mechanisms of crops, as well as adaptation of cultivars to these stresses are not very clear and well understood. The complex interactions between crops and abiotic stresses make it difficult to accurately predict crop responses to climate change using the available crop growth models that have been parameterized and validated using some climate scenarios. While prediction of the complex ideotype-trait combinations may benefit breeders, physiological models that are well validated for target environments are equally important. Therefore, this study investigated elite grain sorghum genotypes from three races (Caudatum, Durra, and Guinea) and a Guinea-Caudatum composite, with different degrees of sensitivity to photoperiod and adaptation to a wide range of latitude locations, for their grain yield and yield stability responses to different environments. The aim was to calibrate growth models in for use in quantifying climate change effects on rainfed sorghum production systems. Field experiments were established to investigate the yield performance and yield stability of ten genotypes in eighteen environments created from a factorial combination of three locations (along a latitudinal gradient) and three monthly-staggered dates of sowing within years in 2008 and 2009. Field trials to study the phenology of seven of the ten genotypes were also established in a similar fashion in 2009 and 2010. Data were also collected on yield and other traits for the first two dates of sowing on six of the genotypes used for the yield performance trial to analyze the relations between grain yield and the selected traits and also evaluate the potential of path analysis in improving understanding of trait yield relations of grain sorghum. Mean grain yields of 0 to 248 g m were recorded across environments and from 74 to 208 g m-2 across the 10 genotypes and generally reduced with delayed sowing. Grain yield was significantly influenced by the main and interactive effects of location, year, sowing date, and genotype, necessitating the assessment of yield superiority and stability for each of the ten cultivars. The only two Caudatum cultivars (Grinkan and IRAT 204) were ranked among the top three by six of the indices. The study also brought to the fore that some yield stability indices correlate perfectly or very highly and could be substituted one for the other when assessing yield stability of sorghum. Very strong correlations were found between grain yield and each of shoot biomass, panicle weight, the number of grains per panicle, and threshing ability across environments, but path coefficient analysis confirmed that these traits are auto-correlated, with grains per panicle being the major mediating trait in all the relationships. Relationships between grain yield and the remaining traits were weak to medium and very inconsistent across the environments. This study brings to the fore, the location- and / or environment-specific adaptation of existing genotypes which should be exploited for tactical adaptation to changed climates, whiles genotypes with general or wider adaptations to environments are being sought. The phenology study showed that for photoperiod sensitive (PPS) genotypes, the number of days from emergence to panicle initiation and the number of leaves increased with latitude and decreased with sowing date, a day-length difference between locations of < 8 minutes increasing crop duration of some varieties by up to 3 weeks and decreasing number of leaves by up to 11 for the same sowing date. Some varieties exhibited photoperiod-insensitivity at one location and photoperiod-sensitivity at another location, indicating the complex nature of photoperiod responses. The study also showed that existing models do not accurately simulate the effect of latitude on the phenology of PPS sorghum, and latitude has to be taken into account in adjusting coefficients to improve the accuracy of such simulations. We conclude that genotypic response of rainfed sorghum is influenced by latitude, sowing date, and their interactions, but very little by years. Some existing cultivars could be deployed as tactical adaptive measures, while efforts are intensified to develop strategic adaptive measures. If changes in rainfall and temperature reduce the length of growing seasons, genotypes which are currently adapted to higher latitudes could easily be shifted southwards to lower latitudes, while those at lower latitudes may fit poorly into the new environments. A large potential for contributing to food security exist for the low latitudes if climates change in the direction predicted in future. It is absolutely necessary to develop new models that will be able to accurately simulate effects of sowing date and latitude on phenology. More research is needed to understand physiological response mechanisms of the pronounced latitude effects on sorghum phenology.Publication Investigating the mode of action of the mycoherbicide component Fusarium oxysporum f.sp. strigae on Striga parasitizing sorghum and its implication for Striga control in Africa(2011) Ndambi Beninweck, Endah; Cadisch, GeorgAmongst the factors that are a threat to food security in Africa, is the parasitic weed Striga hermonthica which affects mostly cereals that constitute the staple food for subsistence farmers, thus affecting the livelihood of millions of people. Popularly known as witchweed, attack due to S. hermonthica can completely destroy the yield of cereal crops. Efforts to combat Striga have had very limited success since farmers rarely adopt control methods due to the mismatch between technologies and farmers? socio-economic conditions. Being such a severe problem, an appropriated method for Striga management adapted for African farmers is very much needed. The use of soil-borne fungi for biocontrol is now being developed as an alternative to the use of chemicals considering the specificity of such fungi and the fact that most of the damage by Striga is done before its emergence. The fungus Fusarium oxysporum f.sp. strigae has been identified and shown to be effective and specific to S. hermonthica and S. asiatica but its mode of action is not yet well known. It is required that the mechanisms underlying the mycoparasitic process of this natural antagonistic agent be well understood before its use. Thus, studies on the effectiveness, specificity and timely colonization of Foxy 2 on S. hermonthica are necessary as well as studies on the effect of Foxy 2 in Striga-host plants which should demonstrate its non-pathogenicity to food crops. The objective of this study was therefore to investigate the mode of action of Foxy 2 in its target S. hermonthica and non-target Sorghum bicolor and also to examine the safety of the use of this mycoherbicide by evaluating its ability to produce toxins. In the first part of the thesis, the ability of Foxy 2 to colonize sorghum roots and possibly shoots was investigated using light and transmission electron microscopy. The efficacy of Foxy 2 to cause death of S. hermonthica seedlings attached to Foxy 2 colonized sorghum roots was also evaluated. Microscopic investigations revealed that the intensity of root colonization by Foxy 2 increased with time and Foxy 2 could survive and colonize the sorghum rhizodermis, root hairs and cortical parenchyma up to four weeks after sowing. This behaviour is well adapted for Striga control as it corresponds to the peak of Striga seedling attachment. Hyphae were completely absent from the sorghum root central cylinder even after four weeks and also absent from the sorghum shoots up to 11 weeks after sowing indicating the non-pathogenity of Foxy 2 to sorghum. Furthermore, Foxy 2 was effective in controlling S. hermonthica by causing disease in 95% and 86% of S. hermonthica seedlings when coated on seeds of tolerant and susceptible sorghum cultivars respectively. Therefore, Foxy 2 could be combined with the tolerant sorghum variety in an integrated approach against S. hermonthica and S. asiatica. The effect of Foxy 2 on various growth stages of S. hermonthica was investigated subsequently so as to understand the mechanisms of action of Foxy 2 within S. hermonthica in the real living complex between the mycoherbicide Foxy 2, the parasite S. hermonthica and its host sorghum. Light, scanning and transmission electron microscopy were used to evaluate the pattern of colonization and control of S. hermonthica seedlings and shoots by Foxy 2. Results showed that 26 days after sowing Foxy 2 coated sorghum seeds, all tissues of the young S. hermonthica seedlings attached to sorghum roots were completely degraded and destroyed by Foxy 2 including the haustorial intrusive cells, hyaline tissue, vessels, central xylem elements and Striga cortical parenchyma. Some S. hermonthica plants which attached to areas of the sorghum root which were not yet colonized by Foxy 2 (towards the root tips), were able to outgrow the fungus and emerged. In the emerged S. hermonthica shoots, hyphae had subsequently penetrated and colonized vessels clogging them over long distances and were identified up to the top of the plants. In some vessels there was an intensive blockage of the vessels by hyphae such that spaces or gaps were rare. Ultrathin sections showed that the diseased S. hermonthica shoots reacted to Foxy 2 invasion by forming an electron dense wall coating along the secondary vessel walls probably to prevent fungal digestion of the walls. The study thus identified two mechanisms by which Foxy 2 contributed to wilting and death of S. hermonthica which included complete digestion of underground S. hermonthica seedlings and hyphal clogging of vessels in emerged S. hermonthica plants which interfered with water conduction. In order to understand the reactions of sorghum towards the presence of Foxy 2 as part of the risk assessment to ensure the safe use of this biocontrol agent, the action of Foxy 2 and a known pathogenic Fusarium species, F. proliferation, were compared in the fourth chapter. Sorghum roots were also wounded to expose the vascular system so as to investigate whether removal of the endodermal barrier could give access to Foxy 2 into the vessels which could lead to digestion resulting in wilting of the sorghum plants. The colonization processes of the two Fusaria species were quite different at all stages of growth. While F. proliferatum degraded the endodermis, invaded the central cylinder and digested the xylem parenchyma two weeks after sowing, Foxy 2 was restricted to the cortex even up to four weeks after sowing. Hyphae of Foxy 2 filled the intercellular spaces at the outer endodermal wall but could not penetrate the endodermis. Sorghum roots were observed to react to Foxy 2 invasion by reinforcing the central cylinder as seen by an increase in blue auto fluorescence especially of the endodermis. Five days after wounding and inoculating sorghum roots, Foxy 2 hyphae invaded the central cylinder very close to the cut but were completely absent from the central cylinder at a distance of 3000 µm from the cut, meanwhile F. proliferatum hyphae had digested the cells of the central cylinder at this distance. This indicated that not only the endodermis was a barrier but there could also be a physiological barrier within the central cylinder of the sorghum root which did not allow further spread of Foxy 2. Hence, exposure of the vascular system did not serve as a route for the invasion of Foxy 2 which therefore implied that it could not cause wilting of the plant. In the last part of the thesis, S. hermonthica shoots were analyzed by HPLC-MS/MS to investigate the possible production of toxins by Foxy 2 to kill the plant. Amongst the toxins tested (beauvericin, fumonisins B1, B2, B3, C and P series, enniatins A, A1, B and B1, and moniliformin), only beauvericin (BEA) was detected to be produced by Foxy 2 in S. hermonthica shoots. The concentration of this toxin increased with increased infection e.g. 60 µg BEA/kg Striga shoot tissue (dry weight) were detected three weeks after emergence rising to 720 µg BEA/kg Striga shoot tissue after six weeks in the severely diseased S. hermonthica shoots. When beauvericin was applied on S. hermonthica shoots at concentrations of 50 µM, transmission electron microscopy showed that all cell types became necrotic. However, beauvericin as well as all the other toxins were not detected in sorghum grains harvested from sorghum plants which were hosts to the S. hermonthica plants and growing from Foxy 2 coated sorghum seeds. Given that some F. oxysporum strains were previously shown to be able to produce fumonisins which are among the toxins which have been reported to be of potential risks to human and animal health, a pure culture of Foxy 2 was evaluated for its fumonisin production ability. Results from real-time PCR using two specific primer pairs for the FUM1 gene (which is the key gene for fumonisin synthesis), were negative confirming that Foxy 2 was not able to produce fumonisins and might not be of major concern for human and animal health when used as a biocontrol agent in the field, therefore safe for use as a biocontrol agent. To conclude, Foxy 2 showed potential to control S. hermonthica by completely destroying young underground stages and clogging vessels in aboveground stages, as well as producing the toxin beauvericin, both actions contributing to wilting of the plants. Its non-pathogenicity to sorghum and its inability to produce fumonisins could be seen as factors which make it well suited as a biocontrol agent. Further research needs to be done to evaluate its efficacy under field conditions and the impact of naturally occurring soil microorganisms and abiotic conditions on performance of Foxy 2 so as to understand its interactions with the environment and to optimize its efficacy.Publication Molecular perspectives on the ecologically inconsistent effectiveness of the mycoherbicide Fusarium oxysporum f. sp. strigae against Striga hermonthica(2022) Anteyi, Williams Oyifioda; Rasche, FrankCereals are a major staple that is crucial for food security in sub-Saharan Africa (SSA). Sadly, the obligate hemiparasitic witchweed, Striga spp., especially Striga hermonthica (Delile) Benth., is a major biotic constraint to cereal production in SSA, causing enormous crop yield losses estimated at US$10 billion annually. Fusarium oxysporum f. sp. strigae (Fos) is the most renowned fungal biological control agent (BCA) for specifically and significantly tackling S. hermonthica under agricultural systems. Field surveys, however, have revealed the inconsistent effectiveness of Fos isolates against S. hermonthica in differing zones of SSA (i.e., West Africa, East Africa). This daunting phenomenon is a critical challenge that affects Fos reliability and deters its use for S. hermonthica management. The inconsistent effectiveness of Fos against S. hermonthica was presumably ascribed to the interactions that occur between the differing location-specific ecological factors of the pathosystem i.e., abiotic (climate, moisture, or soil physico-chemistry) or biotic (S. hermonthica, Fos isolate, or the plant microbiome). Without doubt, the diversity of a host or pathogen is a primary determinant of the innate susceptibility or virulence of the host or pathogen, respectively. In terms of S. hermonthica diversity, genomic variation of individuals, or regional genetic variation of the sampling zone, were the two major forces suspected. However, the important determiner out of the two forces was unknown. Besides, despite the suppression/death that Fos causes to S. hermonthica, the physiological damage S. hermonthica initiates to an infested cereal crop is mostly irreversible. Hence, in examining strategies for circumventing the main problem of Fos inconsistent effectiveness against S. hermonthica, and the physiological consequences of S. hermonthica on the host cereal crop, the integration of other (non-Fos inoculum) BCA were suggested as possible means for improving the efficiency of S. hermonthica biocontrol. For example, by utilizing a bioherbicide cocktail of Fos and plant growth promoting rhizobacteria (PGPR), or Striga seed germination-inhibiting fungal toxins. Apart from the popular reputation of PGPR in enhancing crop health and growth, certain PGPR strains (especially Bacillus subtilis isolate GB03) have been earlier reported for their highly-promising potential of antagonizing S. hermonthica development. Similarly, certain fungal extracellular metabolites (exometabolites), especially of Fusarium origin, were reported to completely inhibit S. hermonthica seed germination in vitro at very low concentrations (≤ 1 mM). Unfortunately, knowledge of the microbe (Fos)–microbe (PGPR) interaction, their localization and ecological niche, for enabling their expected synergistic impact of simultaneously suppressing S. hermonthica and enhancing the Striga-infected cereal crop biomass, was unknown. Also, it was unknown if highly potent/efficient Striga seed germination-inhibiting fungal exometabolites will consistently suppress S. hermonthica in planta. Thus, in the context of genetic diversity in S. hermonthica, the PhD study focused on gaining (molecular) insights into the inconsistent effectiveness of Fos against S. hermonthica; including the examination of some strategies for improving S. hermonthica biocontrol efficiency, precisely by integrating PGPR, or Striga seed germination-inhibiting Fusarium exometabolites, into a S. hermonthica biocontrol system. The first research examined the molecular genetic basis, underlying the variable susceptibility of S. hermonthica populations sampled from differing zones of SSA (West Africa, East Africa) to contrasting Fos isolates (Foxy-2, FK3). Regardless of sampling zone, the S. hermonthica populations displayed divergent susceptibility patterns to the Fos isolates i.e., a S. hermonthica class was susceptible to both Foxy-2 and FK3, while the other class was susceptible to either Foxy-2 or FK3. This manifestation correlated with nucleotide mutations at certain loci. Thus, genomic variation in S. hermonthica is a superior determinant of the inconsistent effectiveness of Fos isolates, rather than the S. hermonthica sampling zone. The second research examined the impact of coinoculating Fos and a PGPR (B. subtilis isolate GB03) into a S. hermonthica-sorghum parasitic system. Notwithstanding the colocalization of Fos and GB03 in common ecological niches of diseased S. hermonthica shoot (mainly in flavonoid-rich regions), GB03 thwarted Fos suppressive activity against S. hermonthica. Interestingly, a novel, alternative Fos entry route into S. hermonthica (through the trichome) was discovered. The coinoculation of Fos and GB03 presented no added advantage for S. hermonthica control. Finally, the third research screened a set of highly phytotoxic Fusarium exometabolites against S. hermonthica seed germination (in vitro) and incidence (in planta). This was to identify the most potent/efficient Fusarium exometabolite for S. hermonthica biocontrol. Among the tested exometabolites, diacetoxyscirpenol (DAS) was the most potent/efficient to completely suppress S. hermonthica both in vitro and in planta. Fos, however, did not produce DAS, due to underexpression of key genes necessary for Fusarium trichothecene biosynthesis. In conclusion, owing to the obligate outcrossing mating system in S. hermonthica, genomic variation is an inevitable phenomenon. This, therefore, plays a crucial role in the variable susceptibility of S. hermonthica to Fos. The newly discovered Fos (direct) entry route into S. hermonthica (trichome entry), elucidates a novel paradigm to the infection mechanism occurring under the S. hermonthica (host)–Fos (pathogen) interaction, in addition to the previously reported indirect, rhizosphere-transmission. Thus, this novel phyllosphere-transmission, paves the way for further research that exploit this alternative Fos infection route for better S. hermonthica biocontrol. Lastly, considering the potency and broadscale efficacy against diverse S. hermonthica populations, the exometabolite DAS could serve as a new agent for a more efficient S. hermonthica biocontrol. Though, further examination of its specific mode of action against the target weed (S. hermonthica), as opposed to non-target organisms, is required.Publication Sorghum breeding strategies for phosphorus-limited environments in Western Africa : from field to genome level(2014) Leiser, Willmar Lukas; Haussmann, BettinaA growing world population juxtaposed with dwindling phosphorus (P) resources present new challenges to current and future global agricultural production. The burden of depleting phosphorus resources is particularly felt in sub-Saharan Africa (SSA). The expected doubling of its population by 2050 and the widespread poor soil fertility will pose an enormous task to future food security in SSA. Plant breeding can be considered as one major factor to improve agricultural production under these harsh low-input conditions. Nevertheless, until recently there have been no thorough breeding efforts to enhance crop production for low-P soil conditions in SSA. Sorghum (Sorghum bicolor L. Moench) is the world’s fifth and Africa’s second most grown cereal crop. Sorghum is a staple crop of SSA and is mostly grown in resource poor regions under low-input cropping conditions, with the largest share in West Africa (WA). Its good adaptation to harsh environmental conditions makes it an important crop for the arid and semi-arid regions, hence a crop vital for food security and increasingly farm income in WA. Breeding sorghum specifically targeting P-limited soils is considered as one of the major challenges for future food production and can serve millions of smallholder farmers in WA. Nevertheless, plant breeders are mostly reluctant to conduct breeding experiments under low-input conditions due to a higher spatial variability of soil properties leading to a lower response to selection. In an unprecedented large scale multi-environment experiment from 2006-2012 in three WA countries, namely Mali, Senegal and Niger, 187 WA sorghum genotypes were evaluated for their performance under P-sufficient and P-deficient conditions. The main goal of this study was to establish a breeding strategy for sorghum targeting P-limited environments. In order to establish such a strategy, the following objectives were defined: (I) to evaluate the impact of spatial models on genotypic selection in low-input field trials, (II) to develop a selection strategy for sorghum targeting P-limited environments, based on quantitative genetic parameters and (III) to identify genomic regions influencing sorghum performance in P-limited environments using modern genomic tools. The major findings of this study can be summarized as follows: Spatial models can increase the precision and efficiency especially of low-input field trials and may lead to different genotype rankings. Hence spatial models and/or adequate field designs are necessary tools for efficient genotype selection under low-input conditions and must be considered in a breeding program targeting P-limited conditions. Sorghum performance is severely impeded by low-P soil conditions and shows large grain yield and plant height reductions and delayed flowering. Nevertheless, WA sorghum is generally well adapted to low-P soil conditions and shows a large exploitable genetic variation for P efficiency. Direct selection under low-P conditions is feasible, necessary and more efficient than indirect selection under high-P conditions and should be pursued in a breeding program targeting P-limited environments. Landrace genotypes are more specifically adapted to low-P conditions and show a higher P acquisition capacity, Durra and Guinea race sorghums show a similar specific low-P adaptation, hence these genotype groups are very promising source germplasm for further breeding efforts. Photoperiod sensitive genotypes show less delay in heading, a higher P acquisition rate and a specific low-P adaptation, hence should be considered for climate and low-P resilience breeding. Selection for low P concentration of grain can be used to enhance internal P use efficiency, therefore decreasing further soil P mining. WA sorghum shows a large genetic diversity, hence providing a valuable source for genetic studies examining the underlying genetics of low-P adaptation. There are many genomic regions involved in sorghum adaptation to low-P soil conditions. Nevertheless, some regions could be identified as major contributors, showing large effects on and strong associations to genotypic performance. Molecular markers in sorghum homologs of the major P efficiency gene PSTOL1 from rice stably enhanced P uptake and crop performance through an increased root growth of sorghum under low-P soil conditions and can be used in marker assisted selection for grain yield production under P-limited conditions. Furthermore, it was observed that grain yield production under P-limited conditions and Al-tolerance are pleiotropically regulated by the same genomic region and most probably the same gene SbMATE. Molecular markers of this region and within the gene SbMATE should be used for marker assisted selection to simultaneously enhance the tolerance to two of the most serious abiotic stresses for sorghum in WA, Al toxicity and P deficiency. WA Guinea race sorghums are an excellent source not only for low-P specific alleles, but also for Al-tolerance and represent therefore an excellent source germplasm for allele mining and marker assisted selection. Genomic selection appears to be a very promising approach to further increase the response to selection. But methods giving more weight to single molecular markers linked to Al-tolerance should be considered. The laid out results show that breeding sorghum specifically targeting P-limited conditions is necessary and feasible using advanced statistical models and modern genetic tools, and should be pursued as a major selection criterion in WA sorghum breeding programs. Nevertheless, only by combining agronomic and socio-economic measures with plant breeding efforts, millions of WA smallholder farmers can be reached and major yield increases can be expected in the near future.