Repository logo
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
    Communities & Collections
    All of hohPublica
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
  1. Home
  2. Browse by Subject

Browsing by Subject "Tick-borne encephalitis virus"

Type the first few letters and click on the Browse button
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Publication
    Comparison of whole genomes of tick-borne encephalitis virus from mountainous alpine regions and regions with a lower altitude
    (2021) Lemhöfer, G.; Chitimia-Dobler, L.; Dobler, G.; Bestehorn-Willmann, Malena
    Tick-borne encephalitis (TBE) has been a notifiable disease in Germany since 2001. Its causative agent, the TBE virus (TBEV), is the most important arbovirus in Europe and Northern Asia. The illness, caused by the European Subtype usually displays flu-like symptoms, but can result in sequelae and, in 2 % of all cases, in death. Over the last few decades, the virus has spread into new habitats, such as higher altitudes in the Alpine region. For this study, it was hypothesized that the environmental challenges that the virus might be exposed to at such altitudes could lead to the selection of viral strains with a higher resilience to such environmental factors. To determine whether strains identified at higher altitudes possessed different genetic traits compared to viruses from lower altitudes, an analysis of viral genomes from higher Alpine altitudes (> 500 m above sea level) (n = 5) and lower altitudes (< 500 m above sea level) (n = 4) was performed. No common phylogenetic ancestry or shared amino acid substitutions could be identified that differentiated the alpine from the lowland viral strains. These findings support the idea of many individual introductions of TBEV into the alpine region and the establishment of foci due to non-viral specific factors such as favorable conditions for vector species and host animals due to climate change.
  • Loading...
    Thumbnail Image
    Publication
    Increased vaccination diversity leads to higher and less-variable neutralization of TBE viruses of the European subtype
    (2023) Bestehorn-Willmann, Malena; Girl, Philipp; Greiner, Franziska; Mackenstedt, Ute; Dobler, Gerhard; Lang, Daniel
    Tick-borne encephalitis (TBE) is an infectious disease of the central nervous system. The causative agent is the tick-borne encephalitis virus (TBEV), which is most commonly transmitted by tick bites, but which may also be transmitted through the consumption of raw dairy products or, in rare instances, via infected transfusions, transplants, or the slaughter of infected animals. The only effective preventive option is active immunization. Currently, two vaccines are available in Europe—Encepur® and FSME-IMMUN®. In Central, Eastern, and Northern Europe, isolated TBEV genotypes belong mainly to the European subtype (TBEV-EU). In this study, we investigated the ability of these two vaccines to induce neutralizing antibodies against a panel of diverse natural TBEV-EU isolates from TBE-endemic areas in southern Germany and in regions of neighboring countries. Sera of 33 donors vaccinated with either FSME-IMMUN®, Encepur®, or a mixture of both were tested against 16 TBEV-EU strains. Phylogenetic analysis of the TBEV-EU genomes revealed substantial genetic diversity and ancestry of the identified 13 genotypic clades. Although all sera were able to neutralize the TBEV-EU strains, there were significant differences among the various vaccination groups. The neutralization assays revealed that the vaccination using the two different vaccine brands significantly increased neutralization titers, decreased intra-serum variance, and reduced the inter-virus variation.

  • Contact
  • FAQ
  • Cookie settings
  • Imprint/Privacy policy