Repository logo
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
    Communities & Collections
    All of hohPublica
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
  1. Home
  2. Browse by Subject

Browsing by Subject "Triacylglycerols"

Type the first few letters and click on the Browse button
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Publication
    Analysis of mono-, di-, triacylglycerols, and fatty acids in food emulsifiers by high-performance liquid chromatography–mass spectrometry
    (2021) Schick, Dinah; Link, Katharina; Schwack, Wolfgang; Granvogl, Michael; Oellig, Claudia
    Mono- and diacylglycerols (MG/DG) of fatty acids (FA), known as emulsifiers of the type E 471, are food additives used to adjust techno-functional properties of various foodstuffs. These emulsifiers, however, are not defined single compounds but comprise, in addition to MG and DG, other constituents such as FA, triacylglycerols (TG), and glycerol. Although the emulsifiers’ compositions affect techno-functional properties of the food, knowledge of the composition is scarcely available, and the emulsifiers and their dosage are generally chosen empirically. Thus, a simple and rather inexpensive method for the simultaneous determination of FA, 1-MG, 2-MG, 1,2-DG, 1,3-DG, and TG by high-performance liquid chromatography–mass spectrometry including a straightforward quantitation strategy has been developed. Reversed-phase chromatography with gradient elution offered adequate separation of 29 considered analytes within 21 peaks, while mass-selective detection provided their unequivocal identification. The quantitation strategy based on calibration just with the C16:0 representatives of each lipid class and a corresponding response factor system has proven to provide reliable results. The determined concentrations of different mixtures comprising varying compositions and concentrations of C16:0, C18:0, and C18:1 components of each lipid class deviated < 20% (n = 351) from the respective target concentrations. Limits of decision were determined to 0.3–0.8 mg/L and limits of quantitation to 0.8–1.7 mg/L, expressed as C16:0 representatives. Application of the method to various E 471 emulsifiers provided detailed data on their chemical compositions, and calculated FA compositions matched very well those determined by common methods such as gas chromatography with flame ionization detection.

  • Contact
  • FAQ
  • Cookie settings
  • Imprint/Privacy policy