Browsing by Subject "Trifolium pratense"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Publication Facilitation of weed seed predation by living mulch and cover crops(2022) Schumacher, Matthias; Gerhards, RolandWeed seed predation (WSP) is an important agro‐ecosystem service that naturally suppresses weed populations. Disturbances directly interfere with the activity of the seed predators, for example, harvest and soil tillage during a peak in weed seed availability (around cereal harvest). Plant soil cover and reduced soil tillage are factors that might positively affect WSP. We investigated cover crops and living mulch along with soil disturbance (no‐till and conventional seeding) in comparison to a fallow and repeated stubble tillage with a chisel plough in terms of WSP, activity‐density of carabid beetles and soil cover. A field experiment with a randomised complete block design and four replications was conducted at two sites from 2017 until 2019. WSP rates were assessed with seed cards and exclosure cages from July until November during a period of eight consecutive days each month. Living mulch exhibited the highest WSP rates of 72% with a maximum of 95% immediately following cereal harvest in August and September of 2017 and 2019, while the remainder of the treatments ranged from 2% to 5% WSP. In October and November mustard showed on average twice as high WSP rates compared to the other treatments (50% vs. 10%–25%). Seeding and soil tillage did not significantly influence carabid beetle activity‐density and WSP, except for living mulch. Predator groups (invertebrates and vertebrates) were not influenced by the various treatments, rather year and month determined the predator groups dominance. Besides their weed suppressive effects, living mulches and cover crops also facilitate WSP.Publication The Influence of nitrogen applications and low rainfall conditions on yield of mixed grass-legume grassland for 2 years(2023) Weggler, Karin; Elsäßer, MartinMixed-species grassland containing legumes were suggested to increase yield compared to monocultures. Furthermore, some legumes were suggested to be able to sustain growth, even under drought conditions. The first aim of the current study was to measure if multispecies grassland with legumes is also more productive when their N input due to symbiotic N2 fixation is taken into account. Our second aim was to determine the benefit of grass–legume mixtures in terms of dry matter production under naturally occurring drought conditions. Mixed-species grasslands, consisting of monocultures and variable mixtures of (a) Trifolium pratense, (b) Trifolium. repens, (c) Lolium perenne, and (d) a mixture of drought-tolerant grasses (GSWT based), were assessed for their dry matter production over two years with contrasting weather patterns. The legume–grass seeding mixtures received either a fixed (180 kg N ha−1) or adapted N-fertilizer application (0–180 kg N ha−1), with the latter taking the assumed symbiotic N2 fixation by legumes into account. Mixed-species grassland showed improved yield compared to monocultures both in comparably humid and drought-affected years. The benefits of multispecies grass–legume mixtures were considerably more obvious under a fixed but still measurable under an adapted N-fertilizer regime. The species diversity effect appears to be significantly dependent on the additional N supply enabled by legumes’ symbiotic N2-fixation. Legumes and drought-tolerant grasses yielded equally well under drought conditions, although legumes showed major advantages during moderate drought and humid conditions. White and red clover, although both legumes, differed significantly in their persistence under elevated-N and their dry matter production under low-N fertilizer application, but were equal in their tolerance towards drought.Publication Phosphorus bioavailability of fertilizers recycled from sewage sludge and their suitability for organic crop production(2020) Wollmann, Iris; Möller, KurtPhosphorus (P) nutrition of plants is a key production factor in agriculture. In an approach to recycle P from urban areas back to agriculture, technologies have been developed to produce mineral P fertilizers out of municipal sewage sludge. In this study, different P fertilizers recycled from sewage sludge have been investigated in pot and field experiments for their bioavailability to maize and several plant species of a crop rotation. It was also investigated, if bioavailability of recycled P fertilizers can be enhanced either by a soil inoculation with different bacteria strains that are efficient in P solubilizing, or by a cultivation of red clover in the crop rotation. As there is a lack of bioavailable P fertilizers in organic cropping systems, P fertilizers recycled from sewage sludge were evaluated for their suitability to be used in organic crop production. It has been shown that most of the investigated fertilizers recycled from sewage sludge have a higher P bioavailability than Phosphate Rock (PR). Fertilizer efficacy seems very dependent from specific production conditions which are decisive for the final product. Among the tested fertilizers, struvite (MgNH4PO4 . 6 H2O) was most efficient in increasing plant P offtake of maize (+ 27.5% in the field, and more than sixfold in a pot experiment, compared to the unfertilized control). Struvite and calcined sewage sludge ash (SSA) are efficient fertilizers at both acidic and neutral soil pH. Other fertilizers (e.g. untreated incineration ashes) have low solubility at soil with pH > 6, and thus, might be used on acidic soil only, or as raw material for fertilizer production. In the field experiment, the overall response to P fertilizer input was low, which probably can be attributed to a sufficient inherent P supply on the used site. An immobilization of fertilizer P over time could be shown in all experiments. Thus, recycled P fertilizers should be applied to responsive crops in the rotation. An improved P supply of maize could be shown when grown after red clover in the crop rotation. This might be attributed to a combination of different factors, such as a solubilization of sparingly soluble P forms in recycled fertilizers, following a drop in soil pH due to biological N2 fixation of clover. A recycling of P to maize via decomposed clover roots might in addition have contributed to an increased P supply of the subsequent maize. Despite this promising effect, P mobilization by clover cultivation was not sufficient to cover the entire P demand of maize. Thus, additional fertilizer P inputs to maize might still be necessary to ensure optimal plant growth on P deficient soils. With one exception, an application of different bacteria strains generally did not affect P supply of the plants. Applied bacteria seem very dependent on the environmental conditions. It is conceivable, that especially in organic systems, a soil application with external bacteria does not enhance the beneficial effects of a high microbial abundance and activity which often is already present in organic cropping systems. From an agronomic point of view, P fertilizers recycled from sewage sludge are better alternatives for organic crop production than PR. A recycling of nutrients generally fits well with basic organic principles. By introducing those fertilizers, the organic system could make a decisive contribution to the ongoing effort of closing the P cycle, and, once more, develop towards a farming system of the future.