Browsing by Subject "Trinkwasser"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Effect of sodium and potassium chloride supplementation in drinking water on performance of laying hens and broilers under high ambient temperature(2008) Nguyen Van, Dai; Bessei, WernerIt is well known that water intake and maintenance of electrolyte balance play a vital role in the resistance of chicken to high temperature. It was hypothesis that voluntary water intake in response to heat stress may not be sufficient to prevent the reduction of performance in laying hens and broilers, and that stimulation of water intake through supplementation of electrolytes in drinking water may assist the birds to maintain high productivity under heat stress. The present study includes three experiments. Two experiments were carried out with laying hens in controlled ambient temperature conditions to study the effects of sodium chloride (NaCl) and potassium chloride (KCl) supplementation in the drinking water on water intake, feed intake, egg quality, body temperature, body weight and productivity of laying hens under high temperature. The third experiment with broilers was conducted in tropical summer conditions of Viet Nam to find out whether supply NaCl and KCl in drinking water would improve productivity and carcass quality of broilers under tropical summer conditions and which concentration of both minerals should be used. The first experiment was conducted for three weeks (from 26 March to 16 April 2007) at the research station of Hohenheim University, Germany. A total of 48 Hisex hens (76 weeks old) were kept in individual laying cages in climatic chambers and were randomly allocated to three experimental groups of 16 hens each. These groups were given 0; 0.2 and 0.4 % KCl in the drinking water for seven consecutive days of heat stress. Before and after heat stress, birds were given normal drinking water. Water and feed were provided ad libitum. The birds were fed a layer diet containing 11.45 MJ/kg Metabolizable Energy, 16.97 % Crude Protein, 3.73% calcium, 0.62% phosphorus, 0.22% sodium and 0.33% chloride. The room temperature was constant at 21±1°C for 7 days, afterwards, it was cycled from 21±1°C to 34±1°C (from 9 to 22 o?clock) for 7 days, and then constant at 21±1°C for 7 days. Humidity was not controlled. 14-hours lighting schedule was maintained during the experiment. Water and feed intake, water: feed ratio, body weight, body temperature, egg production, egg weight, egg shell thickness, egg deformation, egg shell strength, yolk colour and Haugh Unit (HU) were recorded. In the second experiment, effect of NaCl supplementation (0.2 and 0.4%) in drinking water on laying hens was tested under the same temperature program as in the first experiment. A total of 48 Hisex hens (80 weeks old) were used. The third experiment was carried out on the commercial chicken farm from 26 June to 14 August 2007 (49 days). A total of 240 21-day-old broiler chicks (Lohmann meat) were randomly allocated to 5 treatment groups in a randomized block design. Each treatment consisted of three replicates of 16 chickens each. Both, NaCl and KCl, were supplemented from the beginning of the 4th to 7th weeks of age at 0.2% and 0.4% to drinking town water, and unsupplemented water was used as control. The birds were kept in an open sided poultry house on the rice hull litter. Temperature and humidity of the house were not controlled. Water and feed intake were measured weekly. Body temperature of 15 birds per treatment was measured at 23, 33 and 40 day of age. All birds was individually weighed on day of hatching and afterwards at weekly intervals up to 7 weeks of age. At 49 days of age, one male and one female bird from each replicate (a total of 30 birds) were slaughtered to determine carcass characteristics. The results showed that in laying hens, heat stress increased water intake, water to feed ratio, body temperature and eggshell defects. Feed intake, egg production and egg weight decreased tendentiously during heat stress. Body weight, eggshell thickness, eggshell strength, egg deformation, yolk color and HU were not significantly affected by heat stress. Supplementation of KCl or NaCl in drinking water increased water intake and water: feed ratio. Only KCl supplementation maintained body weight, egg weight and egg production, and decreased eggshell defects. Feed intake, eggshell deformation, yolk color and HU were not significantly affected by either KCl or NaCl supplementation. The results showed that KCl supplementation through drinking water may be a means to maintain egg production and egg quality which are usually deteriorated when the temperature in the layer house increases while NaCl was less effective under these conditions. Supplementation of KCl or NaCl in drinking water enhanced water intake and water: feed ratio of broilers under tropical summer conditions. 0.4% NaCl supplementation in drinking water reduced body temperature, increased body weight, improved feed conversion ratio (FCR) and decreased abdominal fat while feed intake was not affected by both NaCl and KCl supplementation. Therefore, 0.4% NaCl added in drinking water may be a means to improve productivity of broiler under high temperature. 0.4% KCl supplementation increased thigh meat, and improved FCR. However, carcass percentage was reduced by KCl supplementation. Therefore, in the tropical summer conditions, higher levels of KCl concentration and economic aspect should be further studied. It was not clear whether the beneficial effects of KCl and NaCl supplementation in drinking water was caused by the cooling effect of the increased water intake and/or the maintenance of electrolytes balance.Publication Trace analysis of acrylamide by high-performance thin-layer chromatography coupled to mass spectrometry(2011) Alpmann, Alexander; Schwack, WolfgangPlanar-chromatography (High-Performance Thin-Layer Chromatography, HPTLC) is a rapid and cost-effective offline separation method. Through advances in the automatization of each step the system reproducibility, from application and development to detection, has been improved. This makes planar-chromatography a highly reliable technique. HPTLC shows a couple of features that make it unique. There is great flexibility concerning application, development and detection that distinguishes HPTLC from other techniques. Especially the parallel development of up to 36 tracks per plate, the possibility of pre-chromatographic derivatization on the stationary phase, application volumes from nL up to mL, two-dimensional development, automated single or multiple development, and the multiple detection with different methods (UV, fluorescence, bioluminescence, etc.) have to be emphasized. A further advantage over column- (LC) and gas-chromatography (GC) is the single use of the stationary phase. This leads to a high tolerance towards sample matrix and allows for reducing sample preparation. Because of these aspects, planar-chromatography is an interesting tool for each analyst. However, in the last years hyphenation with mass spectrometry (MS) did not make great advancements in comparison to HPLC and GC: thus, planar-chromatography became less attractive. Therefore an existing universal hyphenation (ChromeXtract by Dr. Luftmann), that was based upon a plunger for elution, was improved (publication 1). The original version of the plunger did not allow any elution from glass backed plates, since they broke easily under the pressure applied during clamping. It was difficult to adjust the pressure depending on the experience of the operator. Furthermore, solvent leakage was possible because of insufficient sealing of the cup-point. For a reproducible contact pressure that was independent from the experience of the operator, a commercial torque wrench was used for clamping of the plates. This guaranteed reproducible contact pressure. The installation of a small plastic buffer into the plunger ensured a slight kind of attenuation. This decreased the frequency of leakage from over 50 % to below 5 %. An important criterion of applicability of this hyphenation is the repeatability of the extractions and thus the measurements. Thus, zones of xanthylethylcarbamat (XEC) and dansylpropanamid (DPA) were extracted after chromatographic development. Their specific masses were detected in positive ESI-mode. The relative standard deviation of the signal in single-ion-monitoring (SIM) mode was 18.6 % for XEC and 8.7 % for DPA. Linearity was given in the range of 10 to 200 ng/zone with a very good correlation coefficient (r > 0.9919). The limit of quantification at an S/N-ratio of 10 was calculated by means of the blank signal and amounted 52 and 160 pg/zone for XEC and DPA, respectively. Additionally, the influence of the elution solvent on the extraction of the HPTLC-plate and signal intensity was demonstrated with tests using different solvents. The second publication addressed the application of planar-chromatography hyphenated with MS by means of the modified ChromeXtractor on the determination of acrylamide in drinking water. The strict limit within the EU of 0.1 mug/L until then was only controlled through costly methods that were almost exclusively based on GC-MS or LC-MS/MS after applying intensive clean-up procedures. Thus it was aimed to develop a low priced and rapid alternative method for routine analysis based on HPTLC. Therefore a pre-chromatographic in-situ derivatization of acrylamide with a fluorescence marker was used. The product was detected densitometrically after chromatographic separation. During development of the method, the mass of the reaction product was determined for analysis of the derivatization step. With the aid of the modified ChromeXtract the product could be directly extracted from the plate and transferred to MS. The exact mass proved that instead of the originally used fluorescence marker dansylhydrazine the dimethylaminonaphthaline(Dan)-sulfinic acid reacts with acrylamide. Consequently, dansulfinic acid was synthesized and used for derivatization. To take advantage of the high tolerance of planar-chromatography towards various sample matrices, an approach was searched in order to skip sample preparation. However the necessity to use excess of reagent led to high background fluorescence. This allowed only a limit of detection of 20 mug/L. Thus, sample preparation and analyt enrichment was necessary to obtain a method able to control the maximum concentration. In accordance with DIN 38413-6 concerning determination of acrylamide in drinking water, activated carbon was used for analyte enrichment by means of solid phase extraction (SPE). An internal standard (dimethylacrylamide) was added prior sample preparation. The final extract was analysed as described. In spiked samples of drinking water, a 1000-fold lower limit of detection of 0.02 mug/L and a very good mean reproducibility across the whole system was shown, which suffices to control the maximum amount. A comparative study with measurements by LC-MS/MS revealed satisfactory correlation. Thus, for the first time a planar-chromatographic method for the determination of acrylamide at ultra-trace levels were presented. The third publication addresses the application of the developed method on a very complex food matrix like coffee. Several publications reported problems during determination of acrylamide in coffee. Therefore the extremely high tolerance of planar-chromatography towards sample matrix effects was used, allowing for a shortened sample preparation. The idea of a rapid method was followed by the extraction of commercial coffee samples by means of accelerated solvent extraction (ASE). This allowed for higher throughput during sample preparation. To remove a part of the co extracted matrix, the whole ASE-extract was cleaned by SPE with activated carbon and evaporated to a defined volume. This represented a simplification of common multistage extraction methods and clean-up steps, that aim for complete removal of co extracted matrix prior injection into LC- or GC-systems. In accordance with determination of acrylamide in drinking water, the extract was derivatized in-situ with the fluorescence marker Dansulfinic acid and detected densitometrically after chromatographic separation. The concentration of acrylamide was quantified by means of parallel preparation of three standard additions. Systematic errors and the influence of the sample were corrected by the calibration within the matrix. The linearity of the calibration (between r = 0.9825 and 0.9995) were acceptable. Good values were reached for the limit of quantification (48 mug/kg) and repeatability (rsd 3 %). After method development the acrylamide concentration of commercial coffee samples was determined, showing results being consistent with literature findings. Thus the applicability of the newly developed method to complex food samples was demonstrated. In summary, the present work shows the applicability of planar-chromatography hyphenated with mass spectrometry for sensitive determination of acrylamide. It was possible to quantify the analyte at ultra-trace levels using less instrumental effort and time than usual. Quantification in complex sample matrices was feasible in spite of a simplified sample preparation. These applications prove the relevance of planar-chromatography to solve current analytical problems.