Browsing by Subject "Vision"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Charakterisierung der lichtinduzierten Internalisierung des Ionenkanals TRPL aus Drosophila melanogaster(2012) Oberegelsbacher, Claudia; Huber, ArminThe light-dependent isomerization of rhodopsin (Rh1), which takes place in the compound eyes of Drosophila, leads to the activation of the visual signaling cascade. The result is a depolarizing receptor potential caused by the Ca2+-influx through the two cation channels TRP and TRPL. This Ca2+ influx subsequently mediates a change in the subcellular localization of the TRPL channel by inducing its translocation. TRPL of dark-adapted flies is located inside the rhabdomeres, whereas upon illumination, TRPL translocates to a yet unidentified storage compartment in the cell body of the photoreceptor cell. The translocation is reversible; however, the underlying mechanism remains largely unclear. Based on the observation of TRPL-containing vesicles on immunocytochemical sections of illuminated flies a vesicular transport mechanism has been proposed for TRPL translocation. In the present work, the mechanism underlying light-dependent TRPL internalization was studied. Using immunocytochemical techniques, a co-localization of rhodopsin and TRPL was observed in endocytic vesicles. Like many other G-protein coupled receptors, Rhodopsin undergoes endocytosis following activation. The rate of Rh1 internalization depends on the amount of metarhodopsin and, therefore, on the light quality used for illumination. The internalization rate was determined by counting Rh1- and TRPL-positive vesicles observed upon illumination with different light qualities. Surprisingly, the light quality that induced the highest number of Rh1-positive vesicles (i.e. blue light) caused the lowest number of TRPL-positive vesicles, while illumination with orange light induced strong TRPL internalization, but poor Rh1 endocytosis. Likewise, time courses of TRPL internalization were significantly faster in orange light compared to blue light. These findings may indicate a competition between TRPL and Rh1 for a common internalization factor. Analysis of endocytosis in different mutants showed that the internalization of TRPL required Ca2+ influx mediated by the activation of the phototransduction cascade, whereas internalization of Rhodopsin was Ca2+-independent. Therefore, the trigger for activating TRPL and Rh1 endocytosis seems to be different, although both types of internalization were mechanistically similar and depended on dynamin function. The internalization of Rhodopsin is mediated by Rab5. A screen of dominant negative Rab mutants revealed that the light-induced internalization of TRPL is mediated by Rab5 and RabX4. Accordingly, the involvement of Rab5 constitutes another common feature in the endocytosis of TRPL and Rh1. Arrestins play an important role in regulating the endocytosis of rhodopsin. Whereas arrestin2 mediates the inactivation of metarhodopsin, arrestin1 is responsible for subsequent rhodopsin endocytosis. The endocytosis of TRPL is independent of arrestins, but arrestin2 fulfills an important function regarding the stability of the TRPL protein in the rhabdomere. In the present work, the analysis of different arr2 alleles revealed a complete degradation of the TRPL protein after ten days in darkness, but not in light. This finding suggests that arrestin2 has a possible function as a scaffolding protein in the rhabdomer of dark-adapted flies, but not of light-adapted flies, when TRPL is located in a storage compartment in the cell body. There is another fundamental difference between the two transport mechanisms regarding the fate of the protein after it has been internalized. Rhodopsin undergoes rapid lysosomal degradation whereas the trafficking of TRPL is described as a recycling mechanism. In this work, it was possible to show colocalization of TRPL with recycling endosomes indicating an involvement of these compartments in TRPL trafficking. Furthermore, rhodopsin but not TRPL showed colocalization with a lysosomal marker in light-adapted flies, providing additional evidence for the recycling of the TRPL channel.Publication Funktionen N- und C-terminaler Proteindomänen für Assemblierung, subzelluläre Lokalisation und Physiologie der TRP-Ionenkanäle in Drosophila Photorezeptoren(2011) Oberacker, Tina; Huber, ArminIn the photoreceptor cells of Drosophila melanogaster, the cation channels TRP and TRPL are responsible for generating the receptor potential. Previous publications have shown that the TRPL ion channel changes its subcellular localization depending on light conditions, while TRP is located in the rhabdomeres irrespective of light conditions. TRP and TRPL form tetramers. However, it is under debate in the scientific literature if TRP and TRPL form ho-momultimers only or also heteromultimers. In the present study, co-immunoprecipitations (Co-IPs) of untagged TRP or TRPL channels demonstrated that the tetrameric channels in the photoreceptors of Drosophila are composed of homomultimers exclusively. Co-IPs of eGFP-tagged TRP or TRPL channels showed that the tetramers consist of eGFP-tagged and the corresponding untagged channel subunits. To study the biochemical and physiological properties of the cytosolic N- and C-termini of TRP and TRPL, eGFP-tagged chimeric TRP/TRPL ion channels were generated and ex-pressed in the photoreceptor cells R1-R6 of Drosophila. The effect of these termini on trans-location of channels between the rhabdomere and the cell body and on ion channel assembly was studied. Studies of the subcellular localization of eGFP-tagged chimeras showed that a chimera com-posed of the transmembrane regions of TRP and both the N- and the C-terminus of TRPL displayed a light-dependent translocation behavior like TRPL. Interestingly, the translocation of this chimera was much faster than the TRPL-eGFP translocation. The exchange of either the N-terminus or the C-terminus of TRPL with the respective termini of TRP caused a locali-zation of these chimeras mainly in the cell body. This localization neither corresponded to the translocation of TRPL nor to the rhabdomeric localization of TRP. Therefore, motifs inducing light-dependent translocation of TRPL must be located in both termini and are only effective in concert. Co-IPs of the eGFP-tagged chimeras demonstrated that the C-terminus of TRPL appears to be more important than the N-terminus of TRPL. For interaction with the TRP channel the C-terminus of TRP also seems to be more important than the N-terminus. TRPL-TRPL or TRP-TRP interaction via the N-terminus could only be observed by Co-IPs in certain chimeras. In contrast to the termini, the transmembrane regions of both ion channels are not necessary for interaction. Assuming that an interaction between the eGFP-tagged chimera and endogenous channel subunits might cause a mislocalization of the endogenous subunit, immunocytochemical stu-dies were carried out. On cross sections through the eyes of dark and light adapted flies ex-pressing eGFP-tagged chimeras the localization of these eGFP-tagged channels was visua-lized by the eGFP fluorescence, while the localization of the endogenous subunits was de-termined by labeling with specific antibodies. It was found that those chimeras which show a strong interaction with the endogenous channels in Co-IPs cause a mislocalization of the corresponding endogenous channels. This thesis clarified that TRP and TRPL exclusively form homomutlimers in the photorecep-tors of Drosophila. Furthermore, it could be shown, which termini are responsible for the TRP and TRPL homomultimerization and which regions of the TRPL ion channel are necessary for TRPL translocation.