Browsing by Subject "Weed management"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Publication Integrated weed management in a pesticide free area(2023) Saile, Marcus; Gerhards, RolandWeed control is a challenging task for farmers in highly specialized crop production systems. The competition of weeds for light, nutrients and water causes significant yield losses. Chemical weed control is still the standard method in European cropping systems. Due to their high selectivity and efficacy against a wide range of weed species, herbicides provide the most efficient weed control in most crops. However, negative impact of herbicides on the environment, loss of biodiversity, possible risks to consumers due to residues in food chain and the increase and spread of herbicide-resistant species force farmers to reduce herbicide use and call for alternative weed control methods. Mechanical weed control methods including hoeing and harrowing represent the most promising alternative direct weed control methods. Weed control costs for mechanical methods are still higher than for herbicides and weed control efficacy is often lower with less than 80 % compared to around 95 % for herbicides. The efficacy of mechanical weed control is dependent on external factors such as soil water content, soil texture, and weed species diversity in the particular field. Herbicides can therefore not be replaced by a single mechanical weed control method. It needs an Integrated Weed Management (IWM) strategy including preventive and direct methods of weed suppression. In this study, IWM were investigated for typical arable farming systems in Southwestern Germany. Studies for this thesis were conducted from 2017 to 2022. The objectives of the thesis were to combine preventive and curative methods of weed control in diverse cropping systems and to improve mechanical weed control methods by precision farming technologies. The results of the thesis have been published in five papers. The first article addressed the effects of preventive weed control by stubble tillage, cover cropping, and the use of glyphosate treatments against Alopecurus myosuroides and volunteer cereals. In two field trials at two sites, cover crop mixtures achieved equal weed control efficacy of up to 100 % as the dual glyphosate treatment. Stubble tillage practices resulted in lower control but caused the highest energy consumption. The second article focused on the effect of two seeding dates (early-, delayed-sowing) and different herbicide strategies on A. myosuroides control on winter cereals. This study was conducted over three years at three locations. Delayed sowing reduced weed emergence by 30-40 %. Delayed sowing in combination with the pre-emergence herbicide cinmethylin provided equal weed control efficacy as a combination of pre-emergence and post-emergence herbicides. The third article focused on the control of A. myosuroides including the combination of integrated stubble management and various application rates of the pre-emergence herbicide cinmethylin. In four field trials over a two-year period, the pre-emergence herbicide cinmethylin was applied at two application rates at two sites. Control success of up to 100 % was achieved through the combination of inversion tillage, false-seedbed preparation and the reduced rate of cinmethylin. The results also showed a high variation of the effect of preventive measures. The fourth article deals with IWM in spring oats and winter wheat. Field experiments were conducted at two locations over two years in five field trials. Chemical weed control was combined with sensor-based mechanical weed control. Data showed that sensor-based mechanical weed control (hoeing and harrowing) in the field trials achieved equal weed control efficacy of up to 100 %. However, highest grain yields were recorded for the combination of pre-emergence herbicide and post-emergence mechanical weed control. The last article dealt with a new cultivation system without chemical synthetic pesticides but with mineral fertilizers (MECS). The hypothesis was that MECS would increase the competitiveness of the crop on the weeds and generate higher yield benefit compared to the organic cultivation system. Field trials were conducted at four sites over two years. Three different cropping systems, an organic cropping system managed according to organic farming guidelines, a conventional cropping system and a MECS, were compared in a 5-year crop rotation. After two years of studies, no clear conclusion can be made how MECS affects the interaction of crops and weeds. Weed control efficacy in MECS was lower than organic farming. The increase in weed pressure in MECS will cause problems in the subsequent crops. Yields were significantly higher in MECS compared to the organic system and only slightly lower than in the conventional system. It can be concluded from these studies that IWM in combinations with precision farming technologies for mechanical weeding can replace herbicides. However, weed control costs were higher with non-chemical weed control methods.Publication Mechanical weed control: Sensor-based inter-row hoeing in sugar beet (Beta vulgaris L.) in the Transylvanian depression(2024) Parasca, Sergiu Cioca; Spaeth, Michael; Rusu, Teodor; Bogdan, IleanaPrecision agriculture is about applying solutions that serve to obtain a high yield from the optimization of resources and the development of technologies based on the collection and use of precise data. Precision agriculture, including camera-guided row detection and hydraulic steering, is often used as an alternative because crop damage can be decreased and driving speed can be increased, comparable to herbicide applications. The effects of different approaches, such as uncontrolled (UC), mechanical weed control (MWC), herbicide weed control (HWC), and mechanical + herbicide control (MWC + HWC), on weed density and yield of sugar beet were tested and evaluated in two trials (2021 and 2022) in South Transylvania Depression at the tested intervals BBCH 19 and 31. Weed control efficacy (WCE) depends on the emergence of the weeds and a good timing of weed controls in all the trials and methods, though the highest yield of sugar beet roots was recorded in the treatment MWC + HWC, with an increase up to 12–15% (56.48 t ha−1) yield from HWC (50.22 t ha−1) and a yield increase of more than 35–40% than MWC (42.34 t ha−1). Our trials show that it is possible to increase yield and have fewer chemical applications with the introduction of new precision technologies in agriculture, including sensor-guided mechanical controls.Publication Modelling weed management effects on soil erosion in rubber plantations in Southwest China(2018) Liu, Hongxi; Cadisch, GeorgLand use in Xishuangbanna, Southwest China, a typical subtropical rain forest region, has been dramatically changed over the past 30 years. Driven by favorable market opportunities, a rapid expansion of rubber plantations has taken place. This disturbs forests and land occupied by traditional swidden agriculture thus strongly affecting hydrological/erosion processes, and threatening soil fertility and water quality. The presented PhD thesis aimed at assessing farmer acceptable soil conservation strategies in rubber plantations that efficiently control on-site soil loss over an entire rotation time (25 – 40 years) and off-site sediment yield in the watershed. The study started with field investigations on erosion processes and soil conservation management options in rubber plantations (Chapter 2 and 3). Based on the field data, the physically based model “Land Use Change Impact Assessment” (LUCIA) was employed to assess long-term conservation effects in rubber plantations (Chapter 4) and scale effects on sediment yield in the watershed (Chapter 5). Specifically, the first study aimed at assessing soil loss in rubber plantations of different ages (4, 12, 18, 25 and 36 year old) and relating erosion potential to surface cover and fine root density by applying the Universal Soil Loss Equation (USLE) model. This study adopted the space-for-time substitution for field experimental design instead of establishing a long-term observation. Spatial heterogeneity of soil properties (e.g. texture, organic carbon content) and topography (slope steepness and length) interfered erosion at different plantation ages. To meet this challenge, namely account for possible impacts of soil properties and slope on erosion, the empirical USLE model was applied in data analysis to calculate the combined annual cover, management and support practice factor CP, which represents ecosystem erosivity. Calculated CP values varied with the growth phase of rubber in the range of 0.006 - 0.03. Surface cover was recognized as the major driver responsible for the erosive potential changes in rubber plantations. The mid-age rubber plantation exhibited the largest erosion (3 Mg ha-1) due to relatively low surface cover (40%-60%) during the rainy season, which was attributed to low weed cover (below 20%) and the low surface-litter cover favored by a high decomposition rate. Based on the results of the first study, the second study focused on reducing soil loss in rubber plantations by maintaining a high surface cover through improved weed management. Among the different weeding strategies tested, no-weeding most efficiently reduced on-site soil loss to 0.5 Mg ha-1. However, due to the low farmer acceptance of the no-weeding option, we recommend reducing herbicide application to a single dose at the beginning of the rainy season (once-weeding) to better conserve soil as well as inhibiting overgrowth of the understory vegetation. As the second experiment lasted only one-year, while rubber plantation is a perennial crop with a commercial lifespan of 25 – 40 years, the third study applied the LUCIA model to simulate the temporal dynamics of soil erosion in rubber plantations under different weeding strategies. The erosion module in LUCIA was extended to simulate both runoff and rainfall based soil detachment to better reflect the impact of the multi-layer structure of the plantation canopy. The improved LUCIA model successfully represented weed management effects on soil loss and runoff at the test site with a modelling efficiency (EF) of 0.5-0.96 and R2 of 0.64-0.92. Long-term simulation results confirmed that “once-weeding” controlled annual soil loss below 1 Mg ha-1 and kept weed cover below 50%. Therefore, this weeding strategy was suggested as an eco- and farmer friendly management in rubber plantations. Furthermore, LUCIA was applied at watershed level to evaluate plot conservation impact on sediment yield. Two neighboring sub-watersheds with different land cover were chosen: one a forest dominated (S1, control), the other with a mosaic land use (S2), which served to assess mono-conservation (conservation only in rubber plantations) and multi-conservation (conservation in maize, rubber and tea plantations) effects on total sediment yields. The model was well calibrated and validated based on peak flow (EF of 0.70 for calibration and 0.83 for validation) and sediment yield (EF of 0.71 for calibration and 0.95 for validation) measured from the two watersheds outlet points. Model results showed that improved weed management in rubber plantations can efficiently reduce the total sediment yields by 20%; while multi-conservation was largely able to offset increased sediment yields by land use change. In summary, while exploring the dynamics of erosion processes in rubber plantations, a physically based model (LUCIA) was extended and applied to simulate weed management effects over an entire crop cycle (40 years) and implications at higher scale level (watershed sediment yield). Once-weeding per year was identified as an improved management to reduce on-site erosion and off-site sediment yield. But to fully offset increased sediment yield by land use change, a multi-conservation strategy should be employed, which not only focuses on new land uses, like rubber plantations, but also takes care of traditional agricultural types. A conceptual framework is proposed to further assess the specific sub-watershed erosion (e.g. sediment or water yield) effects in large watersheds by spatially combining process-oriented and data-driven (e.g. statistic based, machine learning based) models. This study also serves as a case study to investigate ecological issues (e.g. erosion processes, land use change impact) based on short-term data and modelling in the absence of long-term observations.Publication Pflanzenbauliche Untersuchungen zum ökologischen Anbau von Körnerleguminosen an sommertrockenen Standorten Südwestdeutschlands(2007) Poetsch, Jens; Claupein, WilhelmGrain legumes, as nitrogen fixing crop, protein rich animal feed and marketable product are of great importance for organic agriculture. Due to staged abolition of the possibility to add non-organic products in organic animal feeding, the EU?s demand for organically produced protein feed is further increasing. Field bean (Vicia faba) and field pea (Pisum sativum) are large-scale crops but feature a limited feeding value. Lupin species (Lupinus spp.) excel by protein contents of up to 40% in the seed and higher protein value. At warmth favoured locations in southwestern Germany the valuable soybean (Glycine max) can be grown successfully and obtain above-average proceeds in natural food industry. Constraints of yield stability of grain legumes result amongst other things from frequently high weed infestation in organic cropping systems and suboptimal water supply at summer-dry locations. For lupins, moreover, particular soil requirements and the seed-borne fungal disease anthracnosis are problematic. Nitrogen residues after harvest are relevant for subsequent crop as well as groundwater protection. The presented work aimed at defining preconditions and developing cropping strategies to optimise yield stability and level of organically grown grain legumes with a main focus on summer-dry locations, to increase diversity of cultivatable crops and provide information on disposition of nitrogen residues. For this purpose from 2003 to 2005 trials at several locations as well as in greenhouse and laboratory were accomplished. Field trials on organic weed control in soybean as well as white and narrow-leafed lupin (Lupinus albus und L. angustifolius) were conducted at organically managed commercial sites in the upper rhine valley. At the same time agronomic measures for optimisation of competitiveness and machinery implementation were varied. Early high soil coverage and crop height contributed considerably to grain legumes? competitiveness. Delayed sowing at elevated temperatures supported rapid juvenile development and allowed for pre-sowing weed control. At optimum sowing date these effects may be used without yield depression or maturity problems. Reduced row distance was beneficial for optimum space utilisation and early crop closure, but effectiveness of mechanical means was highest at high row distance and large areal proportion for interrow cultivation. As an optimum compromise for grain legumes row distances of 30 - 35 cm are recommended. Optimum impact of mechanical means against weeds was achieved by combining interrow cultivation with harrow or fingerweeder. Forgoing interrow cultivation may be considered in strongly competitive crops like field bean. Lupin species appeared rather poor in competitiveness compared to other crops. Field trials on effects of cultivar and cropping strategy on overwintering and yield performance of autumn-sown field bean, field pea and white lupin were conducted at three locations. Summer drought caused substantial yield advantages of autumn-sown compared to spring-sown cultivars due to superior water supply at earlier flowering. With sufficient water supply a head start was not yield effective. Differing coincidence with pests and diseases could account for advantages (head start on aphid infestation) or disadvantages (fungal infections during winter period) of autumn-sown cultivars. Overwintering was excellent for winter field bean and good for winter field pea. For winter white lupin further trials are required. Temperatures down to -12°C were well endured by all of the three crops. The most important cropping parameter was the sowing date. Winter field bean permitted a relatively wide sowing window. Winter white lupin required strong development before winter and preferably early sowing. Sowing date of winter field pea presented an optimisation problem, because sowing too early leads to overdevelopment and reduced cold-tolerance, while sowing too late may reduce yield potential. Optimum sowing dates for southwestern Germany according to experimental results are in the range of early September (winter white lupin), mid-October (winter field bean) and late October (winter field pea). Water use efficiency may gain significantly in importance in the future. A two-year trial on cultivation prospects and yield performance of the notably drought tolerant chickpea (Cicer arietinum) in the upper rhine valley resulted in successful crop development, but problems with empty pods and inadequate grain quality. Further trials are considered promising. A field trial with white and narrow-leafed lupin confirmed that anthracnosis of lupin spreads less rapidly and yield effectively at summer-dry locations, and narrow-leafed lupin frequently stays unaffected. Laboratory studies for optimising detection methodology of the causative organism Colletotrichum lupini showed advantages of using sectioned petri dishes (quad plates), which confined propagation of disturbing organisms. A trial on seed storage under different temperatures, seed moisture contents and CO2-atmosphere produced no distinct treatment effect, but could confirm the general decrease of seed infection by storage. According to literature hot air (approx. 4 days at 65°C) also reduces seed infection effectively. Thus, storage or hot air treatment of basic seed and propagation at summer-dry locations appear as a viable over-all strategy. Difficult soil requirements of white and narrow-leafed lupin were studied by a pot trial as well as a comprehensive literature analysis. It is concluded that the so-called lime chlorosis is caused by HCO3--induced inactivation of physiologically relevant Fe(II) in the plant. Accumulation of HCO3- is basically caused by insufficient soil aeration and promoted by the presence of lime in the clay fraction. Furthermore, especially in narrow-leafed lupin, disturbances of root development are caused by high Ca-content or high and at the same time strongly buffered pH of soil solution. These conditions are often but not necessarily caused by lime. Analyses of harvest residues and soil were consulted for estimation of nitrogen dynamics. Immobilisation due to degradation of residues with high C:N ratio as well as uptake by catch crops contributed substantially to nitrogen conservation. Risk of leaching is predominantly site dependent. The over-all nitrogen balance of grain legumes when exporting the seed may be low or even negative. In conclusion, results of the presented work indicate that site adapted cropping systems with agronomic measures in the areas of crop rotation, choice of cultivar, sowing date or space allocation can still contribute considerably to yield stability in organic cultivation of grain legumes.