Hierarchical modelling of variance components makes analysis of resolvable incomplete block designs more efficient

dc.contributor.authorStudnicki, Marcin
dc.contributor.authorPiepho, Hans Peter
dc.date.accessioned2026-01-21T10:29:48Z
dc.date.available2026-01-21T10:29:48Z
dc.date.issued2024
dc.date.updated2025-11-04T17:36:27Z
dc.description.abstractThe standard approach to variance component estimation in linear mixed models for alpha designs is the residual maximum likelihood (REML) method. One drawback of the REML method in the context of incomplete block designs is that the block variance may be estimated as zero, which can compromise the recovery of inter-block information and hence reduce the accuracy of treatment effects estimation. Due to the development of statistical and computational methods, there is an increasing interest in adopting hierarchical approaches to analysis. In order to increase the precision of the analysis of individual trials laid out as alpha designs, we here make a proposal to create an objectively informed prior distribution for variance components for replicates, blocks and plots, based on the results of previous (historical) trials. We propose different modelling approaches for the prior distributions and evaluate the effectiveness of the hierarchical approach compared to the REML method, which is classically used for analysing individual trials in two-stage approaches for multi-environment trials.en
dc.description.sponsorshipDeutsche Forschungsgemeinschafthttp://dx.doi.org/10.13039/501100001659
dc.identifier.urihttps://doi.org/10.1007/s00122-024-04639-4
dc.identifier.urihttps://hohpublica.uni-hohenheim.de/handle/123456789/18349
dc.language.isoeng
dc.rights.licensecc_by
dc.subjectLinear mixed models
dc.subjectVariance components
dc.subjectAlpha designs
dc.subjectIncomplete block designs
dc.subjectREML
dc.subjectHierarchical modeling
dc.subject.ddc510
dc.titleHierarchical modelling of variance components makes analysis of resolvable incomplete block designs more efficienten
dc.type.diniArticle
dcterms.bibliographicCitationTheoretical and applied genetics, 137 (2024), 6, 134. https://doi.org/10.1007/s00122-024-04639-4. ISSN: 1432-2242 Berlin/Heidelberg : Springer Berlin Heidelberg
dcterms.bibliographicCitation.articlenumber134
dcterms.bibliographicCitation.issn1432-2242
dcterms.bibliographicCitation.issue6
dcterms.bibliographicCitation.journaltitleTheoretical and applied genetics
dcterms.bibliographicCitation.originalpublishernameSpringer Berlin Heidelberg
dcterms.bibliographicCitation.originalpublisherplaceBerlin/Heidelberg
dcterms.bibliographicCitation.volume137
local.export.bibtex@article{Studnicki2024, doi = {10.1007/s00122-024-04639-4}, author = {Studnicki, Marcin and Piepho, Hans Peter}, title = {Hierarchical modelling of variance components makes analysis of resolvable incomplete block designs more efficient}, journal = {Theoretical and Applied Genetics}, year = {2024}, volume = {137}, number = {6}, }
local.title.fullHierarchical modelling of variance components makes analysis of resolvable incomplete block designs more efficient
local.university.bibliographyhttps://hohcampus.verw.uni-hohenheim.de/qisserver/a/fs.res.frontend/pub/view/44386

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
00122_2024_Article_4639.pdf
Size:
1012.03 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
supp.zip
Size:
77.41 KB
Format:
Unknown data format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
7.85 KB
Format:
Item-specific license agreed to upon submission
Description: