A review of spatial econometric models for count data
dc.contributor.author | Glaser, Stephanie | de |
dc.date.accessioned | 2024-04-08T08:54:44Z | |
dc.date.available | 2024-04-08T08:54:44Z | |
dc.date.created | 2017-08-24 | |
dc.date.issued | 2017 | |
dc.description.abstract | Despite the increasing availability of spatial count data in research areas like technology spillovers, patenting activities, insurance payments, and crime forecasting, specialized models for analysing such data have received little attention in econometric literature so far. The few existing approaches can be broadly classified into observation-driven models, where the random spatial effects enter the moments of the dependent variable directly, and parameterdriven models, where the random spatial effects are unobservable and induced via a latent process. Moreover, within these groups the modelling approaches (and therefore the interpretation) of spatial effects are quite heterogeneous, stemming in part from the nonlinear structure of count data models. The purpose of this survey is to compare and contrast the various approaches for econometric modelling of spatial counts discussed in the literature. | en |
dc.identifier.swb | 492773122 | |
dc.identifier.uri | https://hohpublica.uni-hohenheim.de/handle/123456789/6182 | |
dc.identifier.urn | urn:nbn:de:bsz:100-opus-13975 | |
dc.language.iso | eng | |
dc.relation.ispartofseries | Hohenheim discussion papers in business, economics and social sciences; 2017,19 | |
dc.rights.license | publ-mit-pod | en |
dc.rights.license | publ-mit-pod | de |
dc.rights.uri | http://opus.uni-hohenheim.de/doku/lic_mit_pod.php | |
dc.subject.ddc | 330 | |
dc.subject.gnd | Ökonometrisches Modell | de |
dc.subject.gnd | Zähldaten | de |
dc.title | A review of spatial econometric models for count data | de |
dc.type.dcmi | Text | de |
dc.type.dini | WorkingPaper | de |
local.access | uneingeschränkter Zugriff | en |
local.access | uneingeschränkter Zugriff | de |
local.bibliographicCitation.publisherPlace | Universität Hohenheim | de |
local.export.bibtex | @techreport{Glaser2017, url = {https://hohpublica.uni-hohenheim.de/handle/123456789/6182}, author = {Glaser, Stephanie}, title = {A review of spatial econometric models for count data}, year = {2017}, school = {Universität Hohenheim}, series = {Hohenheim discussion papers in business, economics and social sciences}, } | |
local.export.bibtexAuthor | Glaser, Stephanie | |
local.export.bibtexKey | Glaser2017 | |
local.export.bibtexType | @techreport | |
local.faculty.number | 3 | de |
local.institute.number | 520 | de |
local.opus.number | 1397 | |
local.series.issueNumber | 2017,19 | |
local.series.title | Hohenheim discussion papers in business, economics and social sciences | |
local.university | Universität Hohenheim | de |
local.university.faculty | Faculty of Business, Economics and Social Sciences | en |
local.university.faculty | Fakultät Wirtschafts- und Sozialwissenschaften | de |
local.university.institute | Institute for Economics | en |
local.university.institute | Institut für Volkswirtschaftslehre | de |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- dp_19_2017_online.pdf
- Size:
- 607.02 KB
- Format:
- Adobe Portable Document Format
- Description:
- Open Access Fulltext