Achtung: hohPublica wurde am 18.11.2024 aktualisiert. Falls Sie auf Darstellungsfehler stoßen, löschen Sie bitte Ihren Browser-Cache (Strg + Umschalt + Entf). *** Attention: hohPublica was last updated on November 18, 2024. If you encounter display errors, please delete your browser cache (Ctrl + Shift + Del).
 

How to observe the principle of concurrent control in an arm‐based meta‐analysis using SAS procedures GLIMMIX and BGLIMM

dc.contributor.authorPiepho, Hans‐Peter
dc.contributor.authorMadden, Laurence V.
dc.date.accessioned2024-09-03T13:38:11Z
dc.date.available2024-09-03T13:38:11Z
dc.date.issued2022de
dc.description.abstractNetwork meta‐analysis is a popular method to synthesize the information obtained in a systematic review of studies (e.g., randomized clinical trials) involving subsets of multiple treatments of interest. The dominant method of analysis employs within‐study information on treatment contrasts and integrates this over a network of studies. One advantage of this approach is that all inference is protected by within‐study randomization. By contrast, arm‐based analyses have been criticized in the past because they may also recover inter‐study information when studies are modeled as random, which is the dominant practice, hence violating the principle of concurrent control, requiring treated individuals to only be compared directly with randomized controls. This issue arises regardless of whether analysis is implemented within a frequentist or a Bayesian framework. Here, we argue that recovery of inter‐study information can be prevented in an arm‐based analysis by adding a fixed study main effect. This simple device means that it is possible to honor the principle of concurrent control in a two‐way analysis‐of‐variance approach that is very easy to implement using generalized linear mixed model procedures and hence may be particularly welcome to those not well versed in the more intricate coding required for a contrast‐based analysis.en
dc.identifier.swb1811139450
dc.identifier.urihttps://hohpublica.uni-hohenheim.de/handle/123456789/16535
dc.identifier.urihttps://doi.org/10.1002/jrsm.1576
dc.language.isoengde
dc.rights.licensecc_byde
dc.source1759-2887de
dc.sourceResearch synthesis methods; Vol. 13, No. 6 (2022), 821-828de
dc.subjectBayesian methodsen
dc.subjectConcurrent controlen
dc.subjectMultiple treatment comparisonsen
dc.subjectNetwork meta‐analysisen
dc.subjectRecovery of inter‐block informationen
dc.subjectSASen
dc.subject.ddc610
dc.titleHow to observe the principle of concurrent control in an arm‐based meta‐analysis using SAS procedures GLIMMIX and BGLIMMen
dc.type.diniArticle
dcterms.bibliographicCitationResearch synthesis methods, 13 (2022), 6, 821-828. https://doi.org/10.1002/jrsm.1576. ISSN: 1759-2887
dcterms.bibliographicCitation.issn1759-2887
dcterms.bibliographicCitation.issue6
dcterms.bibliographicCitation.journaltitleResearch synthesis methods
dcterms.bibliographicCitation.volume13
local.export.bibtex@article{Piepho2022, url = {https://hohpublica.uni-hohenheim.de/handle/123456789/16535}, doi = {10.1002/jrsm.1576}, author = {Piepho, Hans‐Peter and Madden, Laurence V.}, title = {How to observe the principle of concurrent control in an arm‐based meta‐analysis using SAS procedures GLIMMIX and BGLIMM}, journal = {Research synthesis methods}, year = {2022}, volume = {13}, number = {6}, }
local.export.bibtexAuthorPiepho, Hans‐Peter and Madden, Laurence V.
local.export.bibtexKeyPiepho2022
local.export.bibtexType@article

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
JRSM_JRSM1576.pdf
Size:
721.77 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
jrsm1576-sup-0001-supinfo.pdf
Size:
41.67 KB
Format:
Adobe Portable Document Format