Achtung: hohPublica wurde am 18.11.2024 aktualisiert. Falls Sie auf Darstellungsfehler stoßen, löschen Sie bitte Ihren Browser-Cache (Strg + Umschalt + Entf). *** Attention: hohPublica was last updated on November 18, 2024. If you encounter display errors, please delete your browser cache (Ctrl + Shift + Del).
 

A new version of this entry is available:

Loading...
Thumbnail Image
Article
2022

Heritable variation of foliar spectral reflectance enhances genomic prediction of hydrogen cyanide in a genetically structured population of eucalyptus

Abstract (English)

Plants produce a wide diversity of specialized metabolites, which fulfill a wide range of biological functions, helping plants to interact with biotic and abiotic factors. In this study, an integrated approach based on high-throughput plant phenotyping, genome-wide haplotypes, and pedigree information was performed to examine the extent of heritable variation of foliar spectral reflectance and to predict the leaf hydrogen cyanide content in a genetically structured population of a cyanogenic eucalyptus (Eucalyptus cladocalyx F. Muell). In addition, the heritable variation (based on pedigree and genomic data) of more of 100 common spectral reflectance indices was examined. The first profile of heritable variation along the spectral reflectance curve indicated the highest estimate of genomic heritability (hg2=0.41) within the visible region of the spectrum, suggesting that several physiological and biological responses of trees to environmental stimuli (ex., light) are under moderate genetic control. The spectral reflectance index with the highest genomic-based heritability was leaf rust disease severity index 1 (hg2=0.58), followed by the anthocyanin reflectance index and the Browning reflectance index (hg2=0.54). Among the Bayesian prediction models based on spectral reflectance data, Bayes B had a better goodness of fit than the Bayes-C and Bayesian ridge regression models (in terms of the deviance information criterion). All models that included spectral reflectance data outperformed conventional genomic prediction models in their predictive ability and goodness-of-fit measures. Finally, we confirmed the proposed hypothesis that high-throughput phenotyping indirectly capture endophenotypic variants related to specialized metabolites (defense chemistry), and therefore, generally more accurate predictions can be made integrating phenomics and genomics.

File is subject to an embargo until

This is a correction to:

A correction to this entry is available:

This is a new version of:

Notes

Publication license

Publication series

Published in

Frontiers in plant science, 13 (2022), 871943. https://doi.org/10.3389/fpls.2022.871943. ISSN: 1664-462X
Faculty
Institute

Examination date

Supervisor

Edition / version

Citation

DOI

ISSN

ISBN

Language
English

Publisher

Publisher place

Classification (DDC)
580 Plants

Original object

Standardized keywords (GND)

Sustainable Development Goals

BibTeX

@article{Ballesta2022, url = {https://hohpublica.uni-hohenheim.de/handle/123456789/16809}, doi = {10.3389/fpls.2022.871943}, author = {Ballesta, Paulina and Ahmar, Sunny and Lobos, Gustavo A. et al.}, title = {Heritable Variation of Foliar Spectral Reflectance Enhances Genomic Prediction of Hydrogen Cyanide in a Genetically Structured Population of Eucalyptus}, journal = {Frontiers in plant science}, year = {2022}, volume = {13}, }
Share this publication