Predictor preselection for mixed‐frequency dynamic factor models: a simulation study with an empirical application to GDP nowcasting

dc.contributor.authorFranjic, Domenic
dc.contributor.authorSchweikert, Karsten
dc.contributor.corporateFranjic, Domenic; Core Facility Hohenheim and Institute of Economics, University of Hohenheim, Stuttgart, Germany
dc.contributor.corporateSchweikert, Karsten; Core Facility Hohenheim and Institute of Economics, University of Hohenheim, Stuttgart, Germany
dc.date.accessioned2025-06-13T12:53:44Z
dc.date.available2025-06-13T12:53:44Z
dc.date.issued2025
dc.date.updated2025-05-13T11:20:06Z
dc.description.abstractWe investigate the performance of dynamic factor model nowcasting with preselected predictors in a mixed‐frequency setting. The predictors are selected via the elastic net as it is common in the targeted predictor literature. A simulation study and an application to empirical data are used to evaluate different strategies for variable selection, the influence of tuning parameters, and to determine the optimal way to handle mixed‐frequency data. We propose a novel cross‐validation approach that connects the preselection and nowcasting step. In general, we find that preselecting provides more accurate nowcasts compared with the benchmark dynamic factor model using all variables. Our newly proposed cross‐validation method outperforms the other specifications in most cases.en
dc.identifier.urihttps://doi.org/10.1002/for.3193
dc.identifier.urihttps://hohpublica.uni-hohenheim.de/handle/123456789/17685
dc.language.isoeng
dc.rights.licensecc_by
dc.subjectElastic net
dc.subjectHigh‐dimensional
dc.subjectSoft‐thresholding
dc.subjectTargeted predictors
dc.subjectVariable selection
dc.subject.ddc330
dc.titlePredictor preselection for mixed‐frequency dynamic factor models: a simulation study with an empirical application to GDP nowcastingen
dc.type.diniArticle
dcterms.bibliographicCitationJournal of forecasting, 44 (2025), 2, 255-269. https://doi.org/10.1002/for.3193. ISSN: 1099-131X
dcterms.bibliographicCitation.issn0277-6693
dcterms.bibliographicCitation.issn1099-131X
dcterms.bibliographicCitation.issue2
dcterms.bibliographicCitation.journaltitleJournal of forecastingen
dcterms.bibliographicCitation.pageend269
dcterms.bibliographicCitation.pagestart255
dcterms.bibliographicCitation.volume44
local.export.bibtex@article{Franjic2025, url = {https://hohpublica.uni-hohenheim.de/handle/123456789/17685}, doi = {10.1002/for.3193}, author = {Franjic, Domenic and Schweikert, Karsten}, title = {Predictor preselection for mixed‐frequency dynamic factor models: a simulation study with an empirical application to GDP nowcasting}, journal = {Journal of forecasting}, year = {2025}, volume = {44}, number = {2}, pages = {255--269}, }
local.export.bibtexAuthorFranjic, Domenic and Schweikert, Karsten
local.export.bibtexKeyFranjic2024-09-05
local.export.bibtexPages255--269
local.export.bibtexType@article
local.subject.sdg8
local.subject.sdg9
local.subject.sdg17
local.title.fullPredictor preselection for mixed‐frequency dynamic factor models: a simulation study with an empirical application to GDP nowcasting

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
FOR_FOR3193.pdf
Size:
1.08 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
7.85 KB
Format:
Item-specific license agreed to upon submission
Description: