Achtung: hohPublica wurde am 18.11.2024 aktualisiert. Falls Sie auf Darstellungsfehler stoßen, löschen Sie bitte Ihren Browser-Cache (Strg + Umschalt + Entf). *** Attention: hohPublica was last updated on November 18, 2024. If you encounter display errors, please delete your browser cache (Ctrl + Shift + Del).
 

The genetic basis of heat tolerance in temperate maize (Zea mays L.)

dc.contributor.advisorStich, Benjaminde
dc.contributor.authorFrey, Felix P.de
dc.date.accepted2016-04-28
dc.date.accessioned2024-04-08T08:53:40Z
dc.date.available2024-04-08T08:53:40Z
dc.date.created2017-01-03
dc.date.issued2016
dc.description.abstractThe global mean temperature and probability of heat waves are expected to increase in the future, which has the potential to cause severe damages to maize production. To elucidate the genetic mechanisms of the response of temperate maize to heat stress and for the tolerance to heat stress, in a first experiment I applied gene expression profiling. Therewith, I investigated the transcriptomic response of temperate maize to linearly increasing heat levels. Further, I identified genes associated with heat tolerance in a set of eight genotypes with contrasting heat tolerance behavior. I identified 607 heat responsive genes, which elucidate the genetic pathways behind the response of maize to heat stress and can help to expand the knowledge of plant responses to other abiotic stresses. Further, I identified 39 genes which were differentially regulated between heat tolerant and heat susceptible inbreds and, thus, are putative heat tolerance candidate genes. Two of these candidate genes were located in genome regions which were associated with heat tolerance during seedling and adult stage that have been detected in QTL studies in the frame of this thesis. Their exact molecular functions, however, are still unknown. The statistical approach to identify heat tolerance genes, presented in my thesis, enables researchers to investigate the transcriptomic response of multiple genotypes to changing conditions across several experiments, considering their natural variation for a quantitative trait. In order to develop more heat tolerant cultivars, knowledge of natural variation for heat tolerance in temperate maize is indispensable. Therefore, heat tolerance was assessed in a set of intra- and interpool Dent and Flint populations on a multi-environment level. Usually, heat stress in temperate Europe occurs during the adult stage of maize. However, as maize is of increasing importance as a biogas crop, farmers can reduce the growth period by postponed sowing after the harvest of the winter cereals in early summer and, thus, sensitive maize seedlings can be exposed to heat stress. Therefore, I aimed to assess heat tolerance in six connected segregating Dent and Flint populations during both developmental stages considering besides multiple environments also multiple traits. At heat stress, I observed an average decrease of 20% of the shoot dry weight during seedling stage and an average of 50% of yield loss, when heat stress was present during adult stage. At the heat locations heat stress was present in the year, when the experiments were conducted as temperatures exceeded 32°C there for more than 400 hours during the growing period in contrast to less than 30 hours at the standard locations. This emphasizes that maize crop production can suffer with the increasing number and intensity of summer heat waves. Furthermore, the study revealed strong differences between genotypes, which was indispensable to differentiate between heat tolerant and heat susceptible inbred lines. The tested genotypes originating from the Flint pool turned out to possess higher heat tolerance during seedling stage, whereas the genotypes derived from the Dent pool possessed higher heat tolerance during adult stage. This fact could be exploited by the maintenance of two pools with contrasting heat tolerance and could be beneficial for hybrid breeding. A direct selection of more heat tolerant genotypes in terms of grain yield is expensive and time-consuming. To facilitate the selection process in order to develop more heat tolerant cultivars, breeders could make use of marker assisted selection. To lay the foundation for this technique, in my thesis, QTL for heat tolerance during adult and during seedling stage were identified with the previously mentioned populations. Two QTL explained 19% of the total variance for heat tolerance with respect to grain yield in a simultaneous fit. Furthermore each two QTL were identified for two principal components, which accounted for heat tolerance during seedling stage. They explained 14 and 12% of the respective variance. The results can be used by breeding companies to develop marker assays in order to select heat tolerant genotypes from their proprietary genetic material during both stages in an initial screening. This would reduce the field capacities considerably, which are needed to test heat tolerance on a field level.en
dc.description.abstractEs wird erwartet, dass der Klimawandel global zu einer Erhöhung der Temperatur als auch der Wahrscheinlichkeit von Hitzewellen führt. Um die genetischen Mechanismen der Reaktion von Mais auf Hitzestress aufzuklären, untersuchte ich die Genexpressionsänderung von Mais mit steigendem Hitzestress in acht Inzuchtlinien mit gegensätzlicher Hitzetoleranz. Um Gene zu identifizieren, die mit der Hitzetoleranz von Mais in Verbindung stehen, wurde außerdem die natürliche phänotypische Variation dieser Inzuchtlinien bezüglich ihrer Hitzetoleranz in die statistische Analyse miteinbezogen. In meiner Studie wurden 607 Gene identifiziert, die ein Bild der Stoffwechselveränderungen ergaben, die in Mais mit steigendem Hitzestress stattfinden. Die Ergebnisse können des Weiteren hilfreich sein, um genetische Mechanismen von Pflanzen in Reaktion auf andere Arten abiotischen Stresses zu erklären. Insgesamt 39 Kandidatengene wurden identifiziert, die in hitzetoleranten und hitzeempfindichen Genotypen unterschiedliche Expressionsänderung mit steigendem Hitzestress erfuhren. Zwei dieser Kandidatengene für Hitzetoleranz wurden Genomregionen zugeordnet, die im Zuge von QTL-Studien mit der Hitzetoleranz im Jungpflanzen- und adulten Stadium assoziiert wurden. Die genaue molekulare Funktion dieser beiden Kandidatengene ist bisher unbekannt. Der neue statistische Ansatz, mit dem Hitzetoleranzgene in meiner Studie ermittelt wurden, erlaubt es Wissenschaftlern die Genexpression von multiplen Genotypen unter sich verändernden Bedingungen über mehrere Experimente hin zu untersuchen und dabei die natürliche Variation der Genotypen bezüglich eines quantitativen Merkmals in die Analyse miteinzubeziehen. Hitzetolerante Maissorten für mitteleuropäische Bedingungen können nur dann entwickelt werden, wenn natürliche Variation für Hitzetoleranz in lokalem genetischem Matrial vorhanden ist. Um dies zu ermitteln, wurde Hitzetoleranz in einem mehrortigen Versuch mit sechs, durch gemeinsame Elternlinien verbundene, Populationen erhoben, die aus den europäischen Flint und Dent Pools stammen. In Mitteleuropa treten Hitzewellen normalerweise während des adulten Stadiums von Maispflanzen auf. Dadurch dass Mais immer öfter als Biomassepflanze genutzt wird und damit kürzere Wachstumsphasen benötigt, kann die Aussaat auf den Zeitpunkt nach der Ernte der Wintergetreide hinausgezögert werden. Somit können Maiskeimlinge starkem Hitzestress im Frühsommer ausgesetzt werden. Deswegen war mein Ziel, die Hitzetoleranz der Populationen während beider Entwicklungsstadien zu testen, wobei ich bei der Bewertung der Hitzetoleranz neben mehreren Orten auch mehrere Merkmale in Betracht zog. In den Versuchen beobachtete ich bei Hitzestress einen durchschnittlichen 20-prozentigen Verlust an Gesamtsprossmasse im Jungpflanzenstadium sowie einen durchschnittlichen Ertragsverlust von 50%, wenn Hitzestress im adulten Stadium auftrat. Diese Ergebnisse unterstreichen die Problematik, dass der Anbau von Mais unter Hitzewellen leidet. Es wurde außerdem beobachtet, dass es starke Unterschiede zwischen den getesteten Genotypen bezüglich ihrer Hitzetoleranz gab, was es erst ermöglichte effektiv zwischen hitzetoleranten und hitzeanfälligen Genotypen unterscheiden zu können. Ein Vergleich der heterotischen Pools ergab, dass Flint-Linien hitzetoleranter im Jungpflanzen, jedoch Dent-Linien hitzetoleranter im adulten Stadium waren. Diese Tatsache kann ausgenutzt werden, indem zwei Pools mit gegensätzlicher Hitzetoleranz erhalten werden, was sich als vorteilhaft für die Erzeugung von Hybriden erweisen könnte. Eine direkte Selektion hitzetoleranterer Genotypen anhand deren Ertragsverlust bei Hitzestress ist teuer und zeitaufwändig. Um die Selektion im Zuge der Entwicklung von hitzetoleranteren Sorten zu vereinfachen, können Züchter auf markergestützte Selektion zurückgreifen. Um die Grundlage für die Markerentwicklung zu legen, wurden in meiner Studie QTL für Hitzetoleranz im Jungpflanzen- und adulten Stadium mithilfe der letztgenannten Populationen identifiziert. Zwei QTL für Hitzetoleranz mit Hinblick auf den Kornertrag wurden ermittelt, die zusammen 19% der Gesamtvarianz erklärten. Außerdem wurden je zwei QTL für zwei Hauptkomponenten identifiziert, die für die Hitzetoleranz im Jungpflanzenstadium stehen. Diese erklärten 14 und 12% der jeweiligen Gesamtvarianz. Die Ergebnisse dieser Studien können durch Züchtungsunternehmen verwendet werden, um ihr genetisches Material mithilfe von Markeranalysen auf deren Hitzetoleranz während beider Entwicklungsstadien zu untersuchen. Diese Vorgehensweise könnte einen ersten Selektionsschritt darstellen und die benötigten Feldkapazitäten einer anschließende phänotypische Selektion auf Hitzetoleranz erheblich reduzieren.de
dc.identifier.swb481398112
dc.identifier.urihttps://hohpublica.uni-hohenheim.de/handle/123456789/6098
dc.identifier.urnurn:nbn:de:bsz:100-opus-12995
dc.language.isoeng
dc.rights.licensecc_byen
dc.rights.licensecc_byde
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/de/
dc.subjectMaizeen
dc.subjectHeat toleranceen
dc.subjectClimate changeen
dc.subjectQTLen
dc.subjectGene expressionen
dc.subjectMaisde
dc.subjectHitzetoleranzde
dc.subjectKlimawandelde
dc.subjectQTLde
dc.subjectGenexpressionde
dc.subject.ddc630
dc.subject.gndMaisde
dc.subject.gndKlimaänderungde
dc.subject.gndHitzede
dc.subject.gndQTLde
dc.subject.gndGenetikde
dc.subject.gndGenexpressionde
dc.titleThe genetic basis of heat tolerance in temperate maize (Zea mays L.)de
dc.title.dissertationDie genetischen Grundlagen der Hitzetoleranz bei Mais (Zea mays L.)de
dc.type.dcmiTextde
dc.type.diniDoctoralThesisde
local.accessuneingeschränkter Zugriffen
local.accessuneingeschränkter Zugriffde
local.bibliographicCitation.publisherPlaceUniversität Hohenheimde
local.export.bibtex@phdthesis{Frey2016, url = {https://hohpublica.uni-hohenheim.de/handle/123456789/6098}, author = {Frey, Felix P.}, title = {The genetic basis of heat tolerance in temperate maize (Zea mays L.)}, year = {2016}, school = {Universität Hohenheim}, }
local.export.bibtexAuthorFrey, Felix P.
local.export.bibtexKeyFrey2016
local.export.bibtexType@phdthesis
local.faculty.number2de
local.institute.number350de
local.opus.number1299
local.universityUniversität Hohenheimde
local.university.facultyFaculty of Agricultural Sciencesen
local.university.facultyFakultät Agrarwissenschaftende
local.university.instituteInstitute for Plant Breeding, Seed Science and Population Geneticsen
local.university.instituteInstitut für Pflanzenzüchtung, Saatgutforschung und Populationsgenetikde
thesis.degree.levelthesis.doctoral

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Diss_FelixPFrey.pdf
Size:
4.24 MB
Format:
Adobe Portable Document Format
Description:
Open Access Fulltext