Highlighting the potential of multilevel statistical models for analysis of individual agroforestry systems

dc.contributor.authorGolicz, Karolina
dc.contributor.authorPiepho, Hans-Peter
dc.contributor.authorMinarsch, Eva-Maria L.
dc.contributor.authorNiether, Wiebke
dc.contributor.authorGroße-Stoltenberg, André
dc.contributor.authorOldeland, Jens
dc.contributor.authorBreuer, Lutz
dc.contributor.authorGattinger, Andreas
dc.contributor.authorJacobs, Suzanne
dc.contributor.corporateGolicz, Karolina; Institute for Landscape Ecology and Resources Management (ILR), Research Centre for BioSystems, Land Use and Nutrition (iFZ), Justus Liebig University Giessen, Giessen, Germany
dc.contributor.corporatePiepho, Hans-Peter; Biostatistics Unit, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
dc.contributor.corporateMinarsch, Eva-Maria L.; Department of Agronomy and Plant Breeding II, Organic Farming, Justus Liebig University Giessen, Giessen, Germany
dc.contributor.corporateNiether, Wiebke; Department of Agronomy and Plant Breeding II, Organic Farming, Justus Liebig University Giessen, Giessen, Germany
dc.contributor.corporateGroße-Stoltenberg, André; Centre for International Development and Environmental Research (ZEU), Justus Liebig University Giessen, Giessen, Germany
dc.contributor.corporateOldeland, Jens; Institute for Globally Distributed Open Research and Education (IGDORE), Hamburg, Germany
dc.contributor.corporateBreuer, Lutz; Centre for International Development and Environmental Research (ZEU), Justus Liebig University Giessen, Giessen, Germany
dc.contributor.corporateGattinger, Andreas; Department of Agronomy and Plant Breeding II, Organic Farming, Justus Liebig University Giessen, Giessen, Germany
dc.contributor.corporateJacobs, Suzanne; Centre for International Development and Environmental Research (ZEU), Justus Liebig University Giessen, Giessen, Germany
dc.date.accessioned2025-08-27T12:29:03Z
dc.date.available2025-08-27T12:29:03Z
dc.date.issued2023
dc.date.updated2024-12-02T06:36:14Z
dc.description.abstractAgroforestry is a land-use system that combines arable and/or livestock management with tree cultivation, which has been shown to provide a wide range of socio-economic and ecological benefits. It is considered a promising strategy for enhancing resilience of agricultural systems that must remain productive despite increasing environmental and societal pressures. However, agroforestry systems pose a number of challenges for experimental research and scientific hypothesis testing because of their inherent spatiotemporal complexity. We reviewed current approaches to data analysis and sampling strategies of bio-physico-chemical indicators, including crop yield, in European temperate agroforestry systems to examine the existing statistical methods used in agroforestry experiments. We found multilevel models, which are commonly employed in ecology, to be underused and under-described in agroforestry system analysis. This Short Communication together with a companion R script are designed to act as an introduction to multilevel models and to promote their use in agroforestry research.en
dc.description.sponsorshipOpen Access funding enabled and organized by Projekt DEAL.
dc.description.sponsorshipHessische Ministerium für Umwelt, Klimaschutz, Landwirtschaft und Verbraucherschutz
dc.description.sponsorshipJustus-Liebig-Universität Gießen (3114)
dc.identifier.swb1852785047
dc.identifier.urihttps://doi.org/10.1007/s10457-023-00871-x
dc.identifier.urihttps://hohpublica.uni-hohenheim.de/handle/123456789/17024
dc.language.isoeng
dc.rights.licensecc_by
dc.subjectAlley cropping
dc.subjectResearch methods
dc.subjectTransect sampling
dc.subjectMultilevel models
dc.subjectSpatial autocorrelation
dc.subject.ddc630
dc.titleHighlighting the potential of multilevel statistical models for analysis of individual agroforestry systemsen
dc.type.diniArticle
dcterms.bibliographicCitationAgroforestry systems, 97 (2023), 8, 1481-1489. https://doi.org/10.1007/s10457-023-00871-x. ISSN: 1572-9680
dcterms.bibliographicCitation.issn1572-9680
dcterms.bibliographicCitation.journaltitleAgroforestry systems
dcterms.bibliographicCitation.pageend1489
dcterms.bibliographicCitation.pagestart1481
dcterms.bibliographicCitation.volume97
local.export.bibtex@article{Golicz2023, doi = {10.1007/s10457-023-00871-x}, author = {Golicz, Karolina and Piepho, Hans-Peter and Minarsch, Eva-Maria L. et al.}, title = {Highlighting the potential of multilevel statistical models for analysis of individual agroforestry systems}, journal = {Agroforestry Systems}, year = {2023}, volume = {97}, pages = {1481--1489}, }
local.title.fullHighlighting the potential of multilevel statistical models for analysis of individual agroforestry systems

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
s10457-023-00871-x.pdf
Size:
1010.25 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
supp.zip
Size:
4.1 MB
Format:
Unknown data format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
7.85 KB
Format:
Item-specific license agreed to upon submission
Description: