A generalized representation of Faà Di Bruno'S formula using multivariate and matrix‐valued Bell polynomials

dc.contributor.authorEvers, Michael P.
dc.contributor.authorKontny, Markus
dc.contributor.corporateEvers, Michael P.; Department of Economics, University of Hohenheim, Stuttgart, Germany
dc.contributor.corporateKontny, Markus; Deutsche Bundesbank, Frankfurt, Germany
dc.date.accessioned2025-11-24T08:03:06Z
dc.date.available2025-11-24T08:03:06Z
dc.date.issued2025
dc.date.updated2025-11-04T13:56:58Z
dc.description.abstractWe provide a generalization of Faà di Bruno’s formula to represent the 𝑛-th total derivative of the multivariate and vector-valued composite 𝑓 ∘𝑔. To this end, we make use of properties of the Kronecker product and the 𝑛-th derivative of the left-composite 𝑓 , which allow the use of a multivariate and matrix-valued form of partial Bell polynomials to represent the generalized Faà di Bruno’s formula. We further show that standard recurrence relations that hold for the univariate partial Bell polynomial also hold for the multivariate partial Bell polynomial under a simple transformation. We apply this generalization of Faà di Bruno’s formula to the computation of multivariate moments of the normal distribution.en
dc.identifier.urihttps://doi.org/10.1002/mma.11226
dc.identifier.urihttps://hohpublica.uni-hohenheim.de/handle/123456789/18282
dc.language.isoeng
dc.rights.licensecc_by
dc.subjectCommutation matrices
dc.subjectGeneralized Faà di Bruno's formula
dc.subjectMultivariate and matrix‐valued Bell polynomials
dc.subject𝑛-th total derivative of multivariate and vector-valued composite functions
dc.subject.ddc510
dc.titleA generalized representation of Faà Di Bruno'S formula using multivariate and matrix‐valued Bell polynomialsen
dc.type.diniArticle
dcterms.bibliographicCitationMathematical methods in the applied sciences, 48 (2025), 16, 14975-14989. https://doi.org/10.1002/mma.11226. ISSN: 1099-1476 ISSN: 0170-4214
dcterms.bibliographicCitation.issn0170-4214
dcterms.bibliographicCitation.issn1099-1476
dcterms.bibliographicCitation.issue16
dcterms.bibliographicCitation.journaltitleMathematical Methods in the Applied Sciencesen
dcterms.bibliographicCitation.pageend14989
dcterms.bibliographicCitation.pagestart14975
dcterms.bibliographicCitation.volume48
local.export.bibtex@article{Evers2025, doi = {10.1002/mma.11226}, author = {Evers, Michael P. and Kontny, Markus}, title = {A generalized representation of Faà Di Bruno'S formula using multivariate and matrix‐valued Bell polynomials}, journal = {Mathematical methods in the applied sciences}, year = {2025}, volume = {48}, number = {16}, pages = {14975--14989}, }
local.subject.sdg4
local.subject.sdg9
local.subject.sdg17
local.title.fullA generalized representation of Faà Di Bruno'S formula using multivariate and matrix‐valued Bell polynomials

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MMA_MMA11226.pdf
Size:
1.39 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
7.85 KB
Format:
Item-specific license agreed to upon submission
Description: