Exploiting RNA thermometer-driven molecular bioprocess control as a concept for heterologous rhamnolipid production

dc.contributor.authorNoll, Philipp
dc.contributor.authorTreinen, Chantal
dc.contributor.authorMüller, Sven
dc.contributor.authorLilge, Lars
dc.contributor.authorHausmann, Rudolf
dc.contributor.authorHenkel, Marius
dc.date.accessioned2024-09-03T13:25:28Z
dc.date.available2024-09-03T13:25:28Z
dc.date.issued2021de
dc.description.abstractA key challenge to advance the efficiency of bioprocesses is the uncoupling of biomass from product formation, as biomass represents a by-product that is in most cases difficult to recycle efficiently. Using the example of rhamnolipid biosurfactants, a temperature-sensitive heterologous production system under translation control of a fourU RNA thermometer from Salmonella was established to allow separating phases of preferred growth from product formation. Rhamnolipids as bulk chemicals represent a model system for future processes of industrial biotechnology and are therefore tied to the efficiency requirements in competition with the chemical industry. Experimental data confirms function of the RNA thermometer and suggests a major effect of temperature on specific rhamnolipid production rates with an increase of the average production rate by a factor of 11 between 25 and 38 °C, while the major part of this increase is attributable to the regulatory effect of the RNA thermometer rather than an unspecific overall increase in bacterial metabolism. The production capacity of the developed temperature sensitive-system was evaluated in a simple batch process driven by a temperature switch. Product formation was evaluated by efficiency parameters and yields, confirming increased product formation rates and product-per-biomass yields compared to a high titer heterologous rhamnolipid production process from literature.en
dc.identifier.swb176532288X
dc.identifier.urihttps://hohpublica.uni-hohenheim.de/handle/123456789/16445
dc.identifier.urihttps://doi.org/10.1038/s41598-021-94400-4
dc.language.isoengde
dc.rights.licensecc_byde
dc.source2045-2322de
dc.sourceScientific reports; Vol. 11, (2021) 14802de
dc.subject.ddc660
dc.titleExploiting RNA thermometer-driven molecular bioprocess control as a concept for heterologous rhamnolipid productionen
dc.type.diniArticle
dcterms.bibliographicCitationScientific reports, 11 (2021), 14802. https://doi.org/10.1038/s41598-021-94400-4. ISSN: 2045-2322
dcterms.bibliographicCitation.articlenumber14802
dcterms.bibliographicCitation.issn2045-2322
dcterms.bibliographicCitation.journaltitleScientific reports
dcterms.bibliographicCitation.volume11
local.export.bibtex@article{Noll2021, url = {https://hohpublica.uni-hohenheim.de/handle/123456789/16445}, doi = {10.1038/s41598-021-94400-4}, author = {Noll, Philipp and Treinen, Chantal and Müller, Sven et al.}, title = {Exploiting RNA thermometer-driven molecular bioprocess control as a concept for heterologous rhamnolipid production}, journal = {Scientific reports}, year = {2021}, volume = {11}, }
local.subject.sdg9
local.subject.sdg12
local.subject.sdg13
local.title.fullExploiting RNA thermometer-driven molecular bioprocess control as a concept for heterologous rhamnolipid production

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s41598-021-94400-4.pdf
Size:
1.99 MB
Format:
Adobe Portable Document Format