A new version of this entry is available:

Abstract (English)

Stem rust (SR) and leaf rust (LR) are currently the two most important rust diseases of cultivated rye in Central Europe and resistant cultivars promise to prevent yield losses caused by those pathogens. To secure long-lasting resistance, ideally pyramided monogenic resistances and race-nonspecific resistances are applied. To find respective genes, we screened six breeding populations and one testcross population for resistance to artificially inoculated SR and naturally occurring LR in multi-environmental field trials. Five populations were genotyped with a 10K SNP marker chip and one with DArTseqTM. In total, ten SR-QTLs were found that caused a reduction of 5–17 percentage points in stem coverage with urediniospores. Four QTLs thereof were mapped to positions of already known SR QTLs. An additional gene at the distal end of chromosome 2R, Pgs3.1, that caused a reduction of 40 percentage points SR infection, was validated. One SR-QTL on chromosome 3R, QTL-SR4, was found in three populations linked with the same marker. Further QTLs at similar positions, but from different populations, were also found on chromosomes 1R, 4R, and 6R. For SR, additionally seedling tests were used to separate between adult-plant and all-stage resistances and a statistical method accounting for the ordinal-scaled seedling test data was used to map seedling resistances. However, only Pgs3.1 could be detected based on seedling test data, even though genetic variance was observed in another population, too. For LR, in three of the populations, two new large-effect loci (Pr7 and Pr8) on chromosomes 1R and 2R were mapped that caused 34 and 21 percentage points reduction in leaf area covered with urediniospores and one new QTL on chromosome 1R causing 9 percentage points reduction.

File is subject to an embargo until

This is a correction to:

A correction to this entry is available:

This is a new version of:

Notes

Publication license

Publication series

Published in

International journal of molecular sciences, 23 (2022), 22, 13674. https://doi.org/10.3390/ijms232213674. ISSN: 1422-0067

Other version

Faculty

Institute

Examination date

Supervisor

Edition / version

Citation

DOI

ISSN

ISBN

Language

English

Publisher

Publisher place

Classification (DDC)

630 Agriculture

Original object

Standardized keywords (GND)

Sustainable Development Goals

BibTeX

@article{Gruner2022, url = {https://hohpublica.uni-hohenheim.de/handle/123456789/16523}, doi = {10.3390/ijms232213674}, author = {Gruner, Paul and Witzke, Anne and Flath, Kerstin et al.}, title = {Studying Stem Rust and Leaf Rust Resistances of Self-Fertile Rye Breeding Populations}, journal = {International journal of molecular sciences}, year = {2022}, volume = {23}, number = {22}, }

Share this publication